# Copyright (c) 2018, NVIDIA CORPORATION. All rights reserved. # # This work is licensed under the Creative Commons Attribution-NonCommercial # 4.0 International License. To view a copy of this license, visit # http://creativecommons.org/licenses/by-nc/4.0/ or send a letter to # Creative Commons, PO Box 1866, Mountain View, CA 94042, USA. import numpy as np import tensorflow as tf # NOTE: Do not import any application-specific modules here! #---------------------------------------------------------------------------- def lerp(a, b, t): return a + (b - a) * t def lerp_clip(a, b, t): return a + (b - a) * tf.clip_by_value(t, 0.0, 1.0) def cset(cur_lambda, new_cond, new_lambda): return lambda: tf.cond(new_cond, new_lambda, cur_lambda) #---------------------------------------------------------------------------- # Get/create weight tensor for a convolutional or fully-connected layer. def get_weight(shape, gain=np.sqrt(2), use_wscale=False, fan_in=None): if fan_in is None: fan_in = np.prod(shape[:-1]) std = gain / np.sqrt(fan_in) # He init if use_wscale: wscale = tf.constant(np.float32(std), name='wscale') return tf.get_variable('weight', shape=shape, initializer=tf.initializers.random_normal()) * wscale else: return tf.get_variable('weight', shape=shape, initializer=tf.initializers.random_normal(0, std)) #---------------------------------------------------------------------------- # Fully-connected layer. def dense(x, fmaps, gain=np.sqrt(2), use_wscale=False): if len(x.shape) > 2: x = tf.reshape(x, [-1, np.prod([d.value for d in x.shape[1:]])]) w = get_weight([x.shape[1].value, fmaps], gain=gain, use_wscale=use_wscale) w = tf.cast(w, x.dtype) return tf.matmul(x, w) #---------------------------------------------------------------------------- # Convolutional layer. def conv2d(x, fmaps, kernel, gain=np.sqrt(2), use_wscale=False): assert kernel >= 1 and kernel % 2 == 1 w = get_weight([kernel, kernel, x.shape[1].value, fmaps], gain=gain, use_wscale=use_wscale) w = tf.cast(w, x.dtype) return tf.nn.conv2d(x, w, strides=[1,1,1,1], padding='SAME', data_format='NCHW') #---------------------------------------------------------------------------- # Apply bias to the given activation tensor. def apply_bias(x): b = tf.get_variable('bias', shape=[x.shape[1]], initializer=tf.initializers.zeros()) b = tf.cast(b, x.dtype) if len(x.shape) == 2: return x + b else: return x + tf.reshape(b, [1, -1, 1, 1]) #---------------------------------------------------------------------------- # Leaky ReLU activation. Same as tf.nn.leaky_relu, but supports FP16. def leaky_relu(x, alpha=0.2): with tf.name_scope('LeakyRelu'): alpha = tf.constant(alpha, dtype=x.dtype, name='alpha') return tf.maximum(x * alpha, x) #---------------------------------------------------------------------------- # Nearest-neighbor upscaling layer. def upscale2d(x, factor=2): assert isinstance(factor, int) and factor >= 1 if factor == 1: return x with tf.variable_scope('Upscale2D'): s = x.shape x = tf.reshape(x, [-1, s[1], s[2], 1, s[3], 1]) x = tf.tile(x, [1, 1, 1, factor, 1, factor]) x = tf.reshape(x, [-1, s[1], s[2] * factor, s[3] * factor]) return x #---------------------------------------------------------------------------- # Fused upscale2d + conv2d. # Faster and uses less memory than performing the operations separately. def upscale2d_conv2d(x, fmaps, kernel, gain=np.sqrt(2), use_wscale=False): assert kernel >= 1 and kernel % 2 == 1 w = get_weight([kernel, kernel, fmaps, x.shape[1].value], gain=gain, use_wscale=use_wscale, fan_in=(kernel**2)*x.shape[1].value) w = tf.pad(w, [[1,1], [1,1], [0,0], [0,0]], mode='CONSTANT') w = tf.add_n([w[1:, 1:], w[:-1, 1:], w[1:, :-1], w[:-1, :-1]]) w = tf.cast(w, x.dtype) os = [tf.shape(x)[0], fmaps, x.shape[2] * 2, x.shape[3] * 2] return tf.nn.conv2d_transpose(x, w, os, strides=[1,1,2,2], padding='SAME', data_format='NCHW') #---------------------------------------------------------------------------- # Box filter downscaling layer. def downscale2d(x, factor=2): assert isinstance(factor, int) and factor >= 1 if factor == 1: return x with tf.variable_scope('Downscale2D'): ksize = [1, 1, factor, factor] return tf.nn.avg_pool(x, ksize=ksize, strides=ksize, padding='VALID', data_format='NCHW') # NOTE: requires tf_config['graph_options.place_pruned_graph'] = True #---------------------------------------------------------------------------- # Fused conv2d + downscale2d. # Faster and uses less memory than performing the operations separately. def conv2d_downscale2d(x, fmaps, kernel, gain=np.sqrt(2), use_wscale=False): assert kernel >= 1 and kernel % 2 == 1 w = get_weight([kernel, kernel, x.shape[1].value, fmaps], gain=gain, use_wscale=use_wscale) w = tf.pad(w, [[1,1], [1,1], [0,0], [0,0]], mode='CONSTANT') w = tf.add_n([w[1:, 1:], w[:-1, 1:], w[1:, :-1], w[:-1, :-1]]) * 0.25 w = tf.cast(w, x.dtype) return tf.nn.conv2d(x, w, strides=[1,1,2,2], padding='SAME', data_format='NCHW') #---------------------------------------------------------------------------- # Pixelwise feature vector normalization. def pixel_norm(x, epsilon=1e-8): with tf.variable_scope('PixelNorm'): return x * tf.rsqrt(tf.reduce_mean(tf.square(x), axis=1, keepdims=True) + epsilon) #---------------------------------------------------------------------------- # Minibatch standard deviation. def minibatch_stddev_layer(x, group_size=4): with tf.variable_scope('MinibatchStddev'): group_size = tf.minimum(group_size, tf.shape(x)[0]) # Minibatch must be divisible by (or smaller than) group_size. s = x.shape # [NCHW] Input shape. y = tf.reshape(x, [group_size, -1, s[1], s[2], s[3]]) # [GMCHW] Split minibatch into M groups of size G. y = tf.cast(y, tf.float32) # [GMCHW] Cast to FP32. y -= tf.reduce_mean(y, axis=0, keepdims=True) # [GMCHW] Subtract mean over group. y = tf.reduce_mean(tf.square(y), axis=0) # [MCHW] Calc variance over group. y = tf.sqrt(y + 1e-8) # [MCHW] Calc stddev over group. y = tf.reduce_mean(y, axis=[1,2,3], keepdims=True) # [M111] Take average over fmaps and pixels. y = tf.cast(y, x.dtype) # [M111] Cast back to original data type. y = tf.tile(y, [group_size, 1, s[2], s[3]]) # [N1HW] Replicate over group and pixels. return tf.concat([x, y], axis=1) # [NCHW] Append as new fmap. #---------------------------------------------------------------------------- # Generator network used in the paper. def G_paper( latents_in, # First input: Latent vectors [minibatch, latent_size]. labels_in, # Second input: Labels [minibatch, label_size]. num_channels = 1, # Number of output color channels. Overridden based on dataset. resolution = 32, # Output resolution. Overridden based on dataset. label_size = 0, # Dimensionality of the labels, 0 if no labels. Overridden based on dataset. fmap_base = 8192, # Overall multiplier for the number of feature maps. fmap_decay = 1.0, # log2 feature map reduction when doubling the resolution. fmap_max = 512, # Maximum number of feature maps in any layer. latent_size = None, # Dimensionality of the latent vectors. None = min(fmap_base, fmap_max). normalize_latents = True, # Normalize latent vectors before feeding them to the network? use_wscale = True, # Enable equalized learning rate? use_pixelnorm = True, # Enable pixelwise feature vector normalization? pixelnorm_epsilon = 1e-8, # Constant epsilon for pixelwise feature vector normalization. use_leakyrelu = True, # True = leaky ReLU, False = ReLU. dtype = 'float32', # Data type to use for activations and outputs. fused_scale = True, # True = use fused upscale2d + conv2d, False = separate upscale2d layers. structure = None, # 'linear' = human-readable, 'recursive' = efficient, None = select automatically. is_template_graph = False, # True = template graph constructed by the Network class, False = actual evaluation. **kwargs): # Ignore unrecognized keyword args. resolution_log2 = int(np.log2(resolution)) assert resolution == 2**resolution_log2 and resolution >= 4 def nf(stage): return min(int(fmap_base / (2.0 ** (stage * fmap_decay))), fmap_max) def PN(x): return pixel_norm(x, epsilon=pixelnorm_epsilon) if use_pixelnorm else x if latent_size is None: latent_size = nf(0) if structure is None: structure = 'linear' if is_template_graph else 'recursive' act = leaky_relu if use_leakyrelu else tf.nn.relu latents_in.set_shape([None, latent_size]) labels_in.set_shape([None, label_size]) combo_in = tf.cast(tf.concat([latents_in, labels_in], axis=1), dtype) lod_in = tf.cast(tf.get_variable('lod', initializer=np.float32(0.0), trainable=False), dtype) # Building blocks. def block(x, res): # res = 2..resolution_log2 with tf.variable_scope('%dx%d' % (2**res, 2**res)): if res == 2: # 4x4 if normalize_latents: x = pixel_norm(x, epsilon=pixelnorm_epsilon) with tf.variable_scope('Dense'): x = dense(x, fmaps=nf(res-1)*16, gain=np.sqrt(2)/4, use_wscale=use_wscale) # override gain to match the original Theano implementation x = tf.reshape(x, [-1, nf(res-1), 4, 4]) x = PN(act(apply_bias(x))) with tf.variable_scope('Conv'): x = PN(act(apply_bias(conv2d(x, fmaps=nf(res-1), kernel=3, use_wscale=use_wscale)))) else: # 8x8 and up if fused_scale: with tf.variable_scope('Conv0_up'): x = PN(act(apply_bias(upscale2d_conv2d(x, fmaps=nf(res-1), kernel=3, use_wscale=use_wscale)))) else: x = upscale2d(x) with tf.variable_scope('Conv0'): x = PN(act(apply_bias(conv2d(x, fmaps=nf(res-1), kernel=3, use_wscale=use_wscale)))) with tf.variable_scope('Conv1'): x = PN(act(apply_bias(conv2d(x, fmaps=nf(res-1), kernel=3, use_wscale=use_wscale)))) return x def torgb(x, res): # res = 2..resolution_log2 lod = resolution_log2 - res with tf.variable_scope('ToRGB_lod%d' % lod): return apply_bias(conv2d(x, fmaps=num_channels, kernel=1, gain=1, use_wscale=use_wscale)) # Linear structure: simple but inefficient. if structure == 'linear': x = block(combo_in, 2) images_out = torgb(x, 2) for res in range(3, resolution_log2 + 1): lod = resolution_log2 - res x = block(x, res) img = torgb(x, res) images_out = upscale2d(images_out) with tf.variable_scope('Grow_lod%d' % lod): images_out = lerp_clip(img, images_out, lod_in - lod) # Recursive structure: complex but efficient. if structure == 'recursive': def grow(x, res, lod): y = block(x, res) img = lambda: upscale2d(torgb(y, res), 2**lod) if res > 2: img = cset(img, (lod_in > lod), lambda: upscale2d(lerp(torgb(y, res), upscale2d(torgb(x, res - 1)), lod_in - lod), 2**lod)) if lod > 0: img = cset(img, (lod_in < lod), lambda: grow(y, res + 1, lod - 1)) return img() images_out = grow(combo_in, 2, resolution_log2 - 2) assert images_out.dtype == tf.as_dtype(dtype) images_out = tf.identity(images_out, name='images_out') return images_out #---------------------------------------------------------------------------- # Discriminator network used in the paper. def D_paper( images_in, # Input: Images [minibatch, channel, height, width]. num_channels = 1, # Number of input color channels. Overridden based on dataset. resolution = 32, # Input resolution. Overridden based on dataset. label_size = 0, # Dimensionality of the labels, 0 if no labels. Overridden based on dataset. fmap_base = 8192, # Overall multiplier for the number of feature maps. fmap_decay = 1.0, # log2 feature map reduction when doubling the resolution. fmap_max = 512, # Maximum number of feature maps in any layer. use_wscale = True, # Enable equalized learning rate? mbstd_group_size = 4, # Group size for the minibatch standard deviation layer, 0 = disable. dtype = 'float32', # Data type to use for activations and outputs. fused_scale = True, # True = use fused conv2d + downscale2d, False = separate downscale2d layers. structure = None, # 'linear' = human-readable, 'recursive' = efficient, None = select automatically is_template_graph = False, # True = template graph constructed by the Network class, False = actual evaluation. **kwargs): # Ignore unrecognized keyword args. resolution_log2 = int(np.log2(resolution)) assert resolution == 2**resolution_log2 and resolution >= 4 def nf(stage): return min(int(fmap_base / (2.0 ** (stage * fmap_decay))), fmap_max) if structure is None: structure = 'linear' if is_template_graph else 'recursive' act = leaky_relu images_in.set_shape([None, num_channels, resolution, resolution]) images_in = tf.cast(images_in, dtype) lod_in = tf.cast(tf.get_variable('lod', initializer=np.float32(0.0), trainable=False), dtype) # Building blocks. def fromrgb(x, res): # res = 2..resolution_log2 with tf.variable_scope('FromRGB_lod%d' % (resolution_log2 - res)): return act(apply_bias(conv2d(x, fmaps=nf(res-1), kernel=1, use_wscale=use_wscale))) def block(x, res): # res = 2..resolution_log2 with tf.variable_scope('%dx%d' % (2**res, 2**res)): if res >= 3: # 8x8 and up with tf.variable_scope('Conv0'): x = act(apply_bias(conv2d(x, fmaps=nf(res-1), kernel=3, use_wscale=use_wscale))) if fused_scale: with tf.variable_scope('Conv1_down'): x = act(apply_bias(conv2d_downscale2d(x, fmaps=nf(res-2), kernel=3, use_wscale=use_wscale))) else: with tf.variable_scope('Conv1'): x = act(apply_bias(conv2d(x, fmaps=nf(res-2), kernel=3, use_wscale=use_wscale))) x = downscale2d(x) else: # 4x4 if mbstd_group_size > 1: x = minibatch_stddev_layer(x, mbstd_group_size) with tf.variable_scope('Conv'): x = act(apply_bias(conv2d(x, fmaps=nf(res-1), kernel=3, use_wscale=use_wscale))) with tf.variable_scope('Dense0'): x = act(apply_bias(dense(x, fmaps=nf(res-2), use_wscale=use_wscale))) with tf.variable_scope('Dense1'): x = apply_bias(dense(x, fmaps=1+label_size, gain=1, use_wscale=use_wscale)) return x # Linear structure: simple but inefficient. if structure == 'linear': img = images_in x = fromrgb(img, resolution_log2) for res in range(resolution_log2, 2, -1): lod = resolution_log2 - res x = block(x, res) img = downscale2d(img) y = fromrgb(img, res - 1) with tf.variable_scope('Grow_lod%d' % lod): x = lerp_clip(x, y, lod_in - lod) combo_out = block(x, 2) # Recursive structure: complex but efficient. if structure == 'recursive': def grow(res, lod): x = lambda: fromrgb(downscale2d(images_in, 2**lod), res) if lod > 0: x = cset(x, (lod_in < lod), lambda: grow(res + 1, lod - 1)) x = block(x(), res); y = lambda: x if res > 2: y = cset(y, (lod_in > lod), lambda: lerp(x, fromrgb(downscale2d(images_in, 2**(lod+1)), res - 1), lod_in - lod)) return y() combo_out = grow(2, resolution_log2 - 2) assert combo_out.dtype == tf.as_dtype(dtype) scores_out = tf.identity(combo_out[:, :1], name='scores_out') labels_out = tf.identity(combo_out[:, 1:], name='labels_out') return scores_out, labels_out #----------------------------------------------------------------------------