# Copyright (c) 2018, NVIDIA CORPORATION. All rights reserved. # # This work is licensed under the Creative Commons Attribution-NonCommercial # 4.0 International License. To view a copy of this license, visit # http://creativecommons.org/licenses/by-nc/4.0/ or send a letter to # Creative Commons, PO Box 1866, Mountain View, CA 94042, USA. import numpy as np import tensorflow as tf import tfutil #---------------------------------------------------------------------------- # Convenience func that casts all of its arguments to tf.float32. def fp32(*values): if len(values) == 1 and isinstance(values[0], tuple): values = values[0] values = tuple(tf.cast(v, tf.float32) for v in values) return values if len(values) >= 2 else values[0] #---------------------------------------------------------------------------- # Generator loss function used in the paper (WGAN + AC-GAN). def G_wgan_acgan(G, D, opt, training_set, minibatch_size, cond_weight = 1.0): # Weight of the conditioning term. latents = tf.random_normal([minibatch_size] + G.input_shapes[0][1:]) labels = training_set.get_random_labels_tf(minibatch_size) fake_images_out = G.get_output_for(latents, labels, is_training=True) fake_scores_out, fake_labels_out = fp32(D.get_output_for(fake_images_out, is_training=True)) loss = -fake_scores_out if D.output_shapes[1][1] > 0: with tf.name_scope('LabelPenalty'): label_penalty_fakes = tf.nn.softmax_cross_entropy_with_logits_v2(labels=labels, logits=fake_labels_out) loss += label_penalty_fakes * cond_weight return loss #---------------------------------------------------------------------------- # Discriminator loss function used in the paper (WGAN-GP + AC-GAN). def D_wgangp_acgan(G, D, opt, training_set, minibatch_size, reals, labels, wgan_lambda = 10.0, # Weight for the gradient penalty term. wgan_epsilon = 0.001, # Weight for the epsilon term, \epsilon_{drift}. wgan_target = 1.0, # Target value for gradient magnitudes. cond_weight = 1.0): # Weight of the conditioning terms. latents = tf.random_normal([minibatch_size] + G.input_shapes[0][1:]) fake_images_out = G.get_output_for(latents, labels, is_training=True) real_scores_out, real_labels_out = fp32(D.get_output_for(reals, is_training=True)) fake_scores_out, fake_labels_out = fp32(D.get_output_for(fake_images_out, is_training=True)) real_scores_out = tfutil.autosummary('Loss/real_scores', real_scores_out) fake_scores_out = tfutil.autosummary('Loss/fake_scores', fake_scores_out) loss = fake_scores_out - real_scores_out with tf.name_scope('GradientPenalty'): mixing_factors = tf.random_uniform([minibatch_size, 1, 1, 1], 0.0, 1.0, dtype=fake_images_out.dtype) mixed_images_out = tfutil.lerp(tf.cast(reals, fake_images_out.dtype), fake_images_out, mixing_factors) mixed_scores_out, mixed_labels_out = fp32(D.get_output_for(mixed_images_out, is_training=True)) mixed_scores_out = tfutil.autosummary('Loss/mixed_scores', mixed_scores_out) mixed_loss = opt.apply_loss_scaling(tf.reduce_sum(mixed_scores_out)) mixed_grads = opt.undo_loss_scaling(fp32(tf.gradients(mixed_loss, [mixed_images_out])[0])) mixed_norms = tf.sqrt(tf.reduce_sum(tf.square(mixed_grads), axis=[1,2,3])) mixed_norms = tfutil.autosummary('Loss/mixed_norms', mixed_norms) gradient_penalty = tf.square(mixed_norms - wgan_target) loss += gradient_penalty * (wgan_lambda / (wgan_target**2)) with tf.name_scope('EpsilonPenalty'): epsilon_penalty = tfutil.autosummary('Loss/epsilon_penalty', tf.square(real_scores_out)) loss += epsilon_penalty * wgan_epsilon if D.output_shapes[1][1] > 0: with tf.name_scope('LabelPenalty'): label_penalty_reals = tf.nn.softmax_cross_entropy_with_logits_v2(labels=labels, logits=real_labels_out) label_penalty_fakes = tf.nn.softmax_cross_entropy_with_logits_v2(labels=labels, logits=fake_labels_out) label_penalty_reals = tfutil.autosummary('Loss/label_penalty_reals', label_penalty_reals) label_penalty_fakes = tfutil.autosummary('Loss/label_penalty_fakes', label_penalty_fakes) loss += (label_penalty_reals + label_penalty_fakes) * cond_weight return loss #----------------------------------------------------------------------------