Create app.py
Browse files
app.py
ADDED
@@ -0,0 +1,76 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import gradio as gr
|
2 |
+
from ultralytics import YOLOv10
|
3 |
+
import cv2
|
4 |
+
import spaces
|
5 |
+
|
6 |
+
# Load YOLOv10 model
|
7 |
+
model = YOLOv10.from_pretrained('jameslahm/yolov10x')
|
8 |
+
|
9 |
+
# Define object categories to classify activities
|
10 |
+
activity_categories = {
|
11 |
+
"Working": ["laptop", "computer", "keyboard", "office chair"],
|
12 |
+
"Meal Time": ["fork", "spoon", "plate", "food"],
|
13 |
+
"Exercise": ["dumbbell", "bicycle", "yoga mat", "treadmill"],
|
14 |
+
"Outdoors": ["car", "tree", "bicycle", "road"],
|
15 |
+
# Add more categories and associated objects as needed
|
16 |
+
}
|
17 |
+
|
18 |
+
# Function to map detected objects to categorized activities
|
19 |
+
def categorize_activity(detected_objects):
|
20 |
+
activity_summary = {}
|
21 |
+
|
22 |
+
for activity, objects in activity_categories.items():
|
23 |
+
if any(obj in detected_objects for obj in objects):
|
24 |
+
if activity not in activity_summary:
|
25 |
+
activity_summary[activity] = 0
|
26 |
+
activity_summary[activity] += 1 # Increase count for that activity
|
27 |
+
|
28 |
+
return activity_summary
|
29 |
+
|
30 |
+
# Function to process the video and generate the journal
|
31 |
+
@spaces.GPU
|
32 |
+
def generate_journal(video):
|
33 |
+
cap = cv2.VideoCapture(video)
|
34 |
+
frame_rate = cap.get(cv2.CAP_PROP_FPS)
|
35 |
+
journal_entries = {}
|
36 |
+
|
37 |
+
while cap.isOpened():
|
38 |
+
ret, frame = cap.read()
|
39 |
+
if not ret:
|
40 |
+
break
|
41 |
+
|
42 |
+
# Make predictions using YOLOv10
|
43 |
+
results = model.predict(source=frame)
|
44 |
+
detected_objects = [res.name for res in results]
|
45 |
+
|
46 |
+
# Get current timestamp in the video
|
47 |
+
timestamp = cap.get(cv2.CAP_PROP_POS_MSEC) / 1000 # Convert ms to seconds
|
48 |
+
|
49 |
+
# Categorize the detected objects into activities
|
50 |
+
activity_summary = categorize_activity(detected_objects)
|
51 |
+
|
52 |
+
# Store the activities with their timestamp
|
53 |
+
for activity, count in activity_summary.items():
|
54 |
+
if activity not in journal_entries:
|
55 |
+
journal_entries[activity] = []
|
56 |
+
journal_entries[activity].append(f"At {timestamp:.2f} seconds: {count} objects related to {activity}")
|
57 |
+
|
58 |
+
cap.release()
|
59 |
+
|
60 |
+
# Create a formatted journal
|
61 |
+
formatted_journal = []
|
62 |
+
for activity, entries in journal_entries.items():
|
63 |
+
formatted_journal.append(f"**{activity}:**")
|
64 |
+
formatted_journal.extend(entries)
|
65 |
+
|
66 |
+
return "\n".join(formatted_journal)
|
67 |
+
|
68 |
+
# Gradio interface for uploading video and generating journal
|
69 |
+
iface = gr.Interface(
|
70 |
+
fn=generate_journal,
|
71 |
+
inputs=gr.Video(label="Upload Video"),
|
72 |
+
outputs=gr.Textbox(label="Generated Daily Journal"),
|
73 |
+
title="AI-Powered Daily Journal"
|
74 |
+
)
|
75 |
+
|
76 |
+
iface.launch()
|