File size: 37,743 Bytes
ebf3d10
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
import base64
import json
import os
import time
import requests
import yaml
import numpy as np
from http.server import BaseHTTPRequestHandler, ThreadingHTTPServer
from threading import Thread
from modules.utils import get_available_models
from modules.models import load_model, unload_model
from modules.models_settings import (get_model_settings_from_yamls,
                                     update_model_parameters)

from modules import shared
from modules.text_generation import encode, generate_reply

params = {
    'port': int(os.environ.get('OPENEDAI_PORT')) if 'OPENEDAI_PORT' in os.environ else 5001,
}

debug = True if 'OPENEDAI_DEBUG' in os.environ else False

# Slightly different defaults for OpenAI's API
# Data type is important, Ex. use 0.0 for a float 0
default_req_params = {
    'max_new_tokens': 200,
    'temperature': 1.0,
    'top_p': 1.0,
    'top_k': 1,
    'repetition_penalty': 1.18,
    'repetition_penalty_range': 0,
    'encoder_repetition_penalty': 1.0,
    'suffix': None,
    'stream': False,
    'echo': False,
    'seed': -1,
    # 'n' : default(body, 'n', 1),  # 'n' doesn't have a direct map
    'truncation_length': 2048,
    'add_bos_token': True,
    'do_sample': True,
    'typical_p': 1.0,
    'epsilon_cutoff': 0.0,  # In units of 1e-4
    'eta_cutoff': 0.0,  # In units of 1e-4
    'tfs': 1.0,
    'top_a': 0.0,
    'min_length': 0,
    'no_repeat_ngram_size': 0,
    'num_beams': 1,
    'penalty_alpha': 0.0,
    'length_penalty': 1.0,
    'early_stopping': False,
    'mirostat_mode': 0,
    'mirostat_tau': 5.0,
    'mirostat_eta': 0.1,
    'ban_eos_token': False,
    'skip_special_tokens': True,
    'custom_stopping_strings': '',
}

# Optional, install the module and download the model to enable
# v1/embeddings
try:
    from sentence_transformers import SentenceTransformer
except ImportError:
    pass

st_model = os.environ["OPENEDAI_EMBEDDING_MODEL"] if "OPENEDAI_EMBEDDING_MODEL" in os.environ else "all-mpnet-base-v2"
embedding_model = None

# little helper to get defaults if arg is present but None and should be the same type as default.
def default(dic, key, default):
    val = dic.get(key, default)
    if type(val) != type(default):
        # maybe it's just something like 1 instead of 1.0
        try:
            v = type(default)(val)
            if type(val)(v) == val:  # if it's the same value passed in, it's ok.
                return v
        except:
            pass

        val = default
    return val


def clamp(value, minvalue, maxvalue):
    return max(minvalue, min(value, maxvalue))


def float_list_to_base64(float_list):
    # Convert the list to a float32 array that the OpenAPI client expects
    float_array = np.array(float_list, dtype="float32")

    # Get raw bytes
    bytes_array = float_array.tobytes()

    # Encode bytes into base64
    encoded_bytes = base64.b64encode(bytes_array)

    # Turn raw base64 encoded bytes into ASCII
    ascii_string = encoded_bytes.decode('ascii')
    return ascii_string


class Handler(BaseHTTPRequestHandler):
    def send_access_control_headers(self):
        self.send_header("Access-Control-Allow-Origin", "*")
        self.send_header("Access-Control-Allow-Credentials", "true")
        self.send_header(
            "Access-Control-Allow-Methods",
            "GET,HEAD,OPTIONS,POST,PUT"
        )
        self.send_header(
            "Access-Control-Allow-Headers",
            "Origin, Accept, X-Requested-With, Content-Type, "
            "Access-Control-Request-Method, Access-Control-Request-Headers, "
            "Authorization"
        )

    def openai_error(self, message, code = 500, error_type = 'APIError', param = '', internal_message = ''):
        self.send_response(code)
        self.send_access_control_headers()
        self.send_header('Content-Type', 'application/json')
        self.end_headers()
        error_resp = {
            'error': {
                'message': message,
                'code': code,
                'type': error_type,
                'param': param,
            }
        }
        if internal_message:
            error_resp['internal_message'] = internal_message

        response = json.dumps(error_resp)
        self.wfile.write(response.encode('utf-8'))

    def do_OPTIONS(self):
        self.send_response(200)
        self.send_access_control_headers()
        self.send_header('Content-Type', 'application/json')
        self.end_headers()
        self.wfile.write("OK".encode('utf-8'))

    def do_GET(self):
        if self.path.startswith('/v1/engines') or self.path.startswith('/v1/models'):
            current_model_list = [ shared.model_name ] # The real chat/completions model, maybe "None"
            embeddings_model_list = [ st_model ] if embedding_model else [] # The real sentence transformer embeddings model
            pseudo_model_list = [ # these are expected by so much, so include some here as a dummy
                'gpt-3.5-turbo', # /v1/chat/completions
                'text-curie-001', # /v1/completions, 2k context
                'text-davinci-002' # /v1/embeddings text-embedding-ada-002:1536, text-davinci-002:768
            ]

            is_legacy = 'engines' in self.path
            is_list = self.path in ['/v1/engines', '/v1/models']

            resp = ''

            if is_legacy and not is_list: # load model
                model_name = self.path[self.path.find('/v1/engines/') + len('/v1/engines/'):]

                resp = {
                    "id": model_name,
                    "object": "engine",
                    "owner": "self",
                    "ready": True,
                }
                if model_name not in pseudo_model_list + embeddings_model_list + current_model_list: # Real model only
                    # No args. Maybe it works anyways!
                    # TODO: hack some heuristics into args for better results

                    shared.model_name = model_name
                    unload_model()

                    model_settings = get_model_settings_from_yamls(shared.model_name)
                    shared.settings.update(model_settings)
                    update_model_parameters(model_settings, initial=True)

                    if shared.settings['mode'] != 'instruct':
                        shared.settings['instruction_template'] = None

                    shared.model, shared.tokenizer = load_model(shared.model_name)

                    if not shared.model: # load failed.
                        shared.model_name = "None"
                        resp['id'] = "None"
                        resp['ready'] = False

            elif is_list:
                # TODO: Lora's?
                available_model_list = get_available_models()
                all_model_list = current_model_list + embeddings_model_list + pseudo_model_list + available_model_list

                models = {}

                if is_legacy:
                    models = [{ "id": id, "object": "engine", "owner": "user", "ready": True } for id in all_model_list ]
                    if not shared.model:
                        models[0]['ready'] = False
                else:
                    models = [{ "id": id, "object": "model", "owned_by": "user", "permission": [] } for id in all_model_list ]

                resp = {
                    "object": "list",
                    "data": models,
                }

            else:
                the_model_name = self.path[len('/v1/models/'):]
                resp = {
                    "id": the_model_name,
                    "object": "model",
                    "owned_by": "user",
                    "permission": []
                }

            self.send_response(200)
            self.send_access_control_headers()
            self.send_header('Content-Type', 'application/json')
            self.end_headers()
            response = json.dumps(resp)
            self.wfile.write(response.encode('utf-8'))

        elif '/billing/usage' in self.path:
            # Ex. /v1/dashboard/billing/usage?start_date=2023-05-01&end_date=2023-05-31
            self.send_response(200)
            self.send_access_control_headers()
            self.send_header('Content-Type', 'application/json')
            self.end_headers()

            response = json.dumps({
                "total_usage": 0,
            })
            self.wfile.write(response.encode('utf-8'))

        else:
            self.send_error(404)

    def do_POST(self):
        if debug:
            print(self.headers)  # did you know... python-openai sends your linux kernel & python version?
        content_length = int(self.headers['Content-Length'])
        body = json.loads(self.rfile.read(content_length).decode('utf-8'))

        if debug:
            print(body)

        if '/completions' in self.path or '/generate' in self.path:

            if not shared.model:
                self.openai_error("No model loaded.")
                return

            is_legacy = '/generate' in self.path
            is_chat_request = 'chat' in self.path
            resp_list = 'data' if is_legacy else 'choices'

            # XXX model is ignored for now
            # model = body.get('model', shared.model_name) # ignored, use existing for now
            model = shared.model_name
            created_time = int(time.time())

            cmpl_id = "chatcmpl-%d" % (created_time) if is_chat_request else "conv-%d" % (created_time)

            # Request Parameters
            # Try to use openai defaults or map them to something with the same intent
            req_params = default_req_params.copy()
            stopping_strings = []

            if 'stop' in body:
                if isinstance(body['stop'], str):
                    stopping_strings.extend([body['stop']])
                elif isinstance(body['stop'], list):
                    stopping_strings.extend(body['stop'])

            truncation_length = default(shared.settings, 'truncation_length', 2048)
            truncation_length = clamp(default(body, 'truncation_length', truncation_length), 1, truncation_length)

            default_max_tokens = truncation_length if is_chat_request else 16  # completions default, chat default is 'inf' so we need to cap it.

            max_tokens_str = 'length' if is_legacy else 'max_tokens'
            max_tokens = default(body, max_tokens_str, default(shared.settings, 'max_new_tokens', default_max_tokens))
            # if the user assumes OpenAI, the max_tokens is way too large - try to ignore it unless it's small enough

            req_params['max_new_tokens'] = max_tokens
            req_params['truncation_length'] = truncation_length
            req_params['temperature'] = clamp(default(body, 'temperature', default_req_params['temperature']), 0.001, 1.999) # fixup absolute 0.0
            req_params['top_p'] = clamp(default(body, 'top_p', default_req_params['top_p']), 0.001, 1.0)
            req_params['top_k'] = default(body, 'best_of', default_req_params['top_k'])
            req_params['suffix'] = default(body, 'suffix', default_req_params['suffix'])
            req_params['stream'] = default(body, 'stream', default_req_params['stream'])
            req_params['echo'] = default(body, 'echo', default_req_params['echo'])
            req_params['seed'] = shared.settings.get('seed', default_req_params['seed'])
            req_params['add_bos_token'] = shared.settings.get('add_bos_token', default_req_params['add_bos_token'])

            is_streaming = req_params['stream']

            self.send_response(200)
            self.send_access_control_headers()
            if is_streaming:
                self.send_header('Content-Type', 'text/event-stream')
                self.send_header('Cache-Control', 'no-cache')
                # self.send_header('Connection', 'keep-alive')
            else:
                self.send_header('Content-Type', 'application/json')
            self.end_headers()

            token_count = 0
            completion_token_count = 0
            prompt = ''
            stream_object_type = ''
            object_type = ''

            if is_chat_request:
                # Chat Completions
                stream_object_type = 'chat.completions.chunk'
                object_type = 'chat.completions'

                messages = body['messages']

                role_formats = {
                    'user': 'user: {message}\n',
                    'assistant': 'assistant: {message}\n',
                    'system': '{message}',
                    'context': 'You are a helpful assistant. Answer as concisely as possible.',
                    'prompt': 'assistant:',
                }

                # Instruct models can be much better
                if shared.settings['instruction_template']:
                    try:
                        instruct = yaml.safe_load(open(f"characters/instruction-following/{shared.settings['instruction_template']}.yaml", 'r'))

                        template = instruct['turn_template']
                        system_message_template = "{message}"
                        system_message_default = instruct['context']
                        bot_start = template.find('<|bot|>') # So far, 100% of instruction templates have this token
                        user_message_template = template[:bot_start].replace('<|user-message|>', '{message}').replace('<|user|>', instruct['user'])
                        bot_message_template = template[bot_start:].replace('<|bot-message|>', '{message}').replace('<|bot|>', instruct['bot'])
                        bot_prompt = bot_message_template[:bot_message_template.find('{message}')].rstrip(' ')
                
                        role_formats = {
                            'user': user_message_template,
                            'assistant': bot_message_template,
                            'system': system_message_template,
                            'context': system_message_default,
                            'prompt': bot_prompt,
                        }

                        if 'Alpaca' in shared.settings['instruction_template']:
                            stopping_strings.extend(['\n###'])
                        elif instruct['user']: # WizardLM and some others have no user prompt.
                            stopping_strings.extend(['\n' + instruct['user'], instruct['user']])

                        if debug:
                            print(f"Loaded instruction role format: {shared.settings['instruction_template']}")

                    except Exception as e:
                        stopping_strings.extend(['\nuser:'])

                        print(f"Exception: When loading characters/instruction-following/{shared.settings['instruction_template']}.yaml: {repr(e)}")
                        print("Warning: Loaded default instruction-following template for model.")

                else:
                    stopping_strings.extend(['\nuser:'])
                    print("Warning: Loaded default instruction-following template for model.")

                system_msgs = []
                chat_msgs = []

                # You are ChatGPT, a large language model trained by OpenAI. Answer as concisely as possible. Knowledge cutoff: {knowledge_cutoff} Current date: {current_date}
                context_msg = role_formats['system'].format(message=role_formats['context']) if role_formats['context'] else ''
                if context_msg:
                    system_msgs.extend([context_msg])

                # Maybe they sent both? This is not documented in the API, but some clients seem to do this.
                if 'prompt' in body:
                    prompt_msg = role_formats['system'].format(message=body['prompt'])
                    system_msgs.extend([prompt_msg])

                for m in messages:
                    role = m['role']
                    content = m['content']
                    msg = role_formats[role].format(message=content)
                    if role == 'system':
                        system_msgs.extend([msg])
                    else:
                        chat_msgs.extend([msg])

                # can't really truncate the system messages
                system_msg = '\n'.join(system_msgs)
                if system_msg and system_msg[-1] != '\n':
                    system_msg = system_msg + '\n'

                system_token_count = len(encode(system_msg)[0])
                remaining_tokens = truncation_length - system_token_count
                chat_msg = ''

                while chat_msgs:
                    new_msg = chat_msgs.pop()
                    new_size = len(encode(new_msg)[0])
                    if new_size <= remaining_tokens:
                        chat_msg = new_msg + chat_msg
                        remaining_tokens -= new_size
                    else:
                        print(f"Warning: too many messages for context size, dropping {len(chat_msgs) + 1} oldest message(s).")
                        break

                prompt = system_msg + chat_msg + role_formats['prompt']

                token_count = len(encode(prompt)[0])

            else:
                # Text Completions
                stream_object_type = 'text_completion.chunk'
                object_type = 'text_completion'

                # ... encoded as a string, array of strings, array of tokens, or array of token arrays.
                if is_legacy:
                    prompt = body['context']  # Older engines.generate API
                else:
                    prompt = body['prompt']  # XXX this can be different types

                if isinstance(prompt, list):
                    self.openai_error("API Batched generation not yet supported.")
                    return

                token_count = len(encode(prompt)[0])
                if token_count >= truncation_length:
                    new_len = int(len(prompt) * shared.settings['truncation_length'] / token_count)
                    prompt = prompt[-new_len:]
                    new_token_count = len(encode(prompt)[0])
                    print(f"Warning: truncating prompt to {new_len} characters, was {token_count} tokens. Now: {new_token_count} tokens.")
                    token_count = new_token_count

            if truncation_length - token_count < req_params['max_new_tokens']:
                print(f"Warning: Ignoring max_new_tokens ({req_params['max_new_tokens']}), too large for the remaining context. Remaining tokens: {truncation_length - token_count}")
                req_params['max_new_tokens'] = truncation_length - token_count
                print(f"Warning: Set max_new_tokens = {req_params['max_new_tokens']}")

            if is_streaming:
                # begin streaming
                chunk = {
                    "id": cmpl_id,
                    "object": stream_object_type,
                    "created": created_time,
                    "model": shared.model_name,
                    resp_list: [{
                        "index": 0,
                        "finish_reason": None,
                    }],
                }

                if stream_object_type == 'text_completion.chunk':
                    chunk[resp_list][0]["text"] = ""
                else:
                    # So yeah... do both methods? delta and messages.
                    chunk[resp_list][0]["message"] = {'role': 'assistant', 'content': ''}
                    chunk[resp_list][0]["delta"] = {'role': 'assistant', 'content': ''}

                response = 'data: ' + json.dumps(chunk) + '\r\n\r\n'
                self.wfile.write(response.encode('utf-8'))

            # generate reply #######################################
            if debug:
                print({'prompt': prompt, 'req_params': req_params})
            generator = generate_reply(prompt, req_params, stopping_strings=stopping_strings, is_chat=False)

            answer = ''
            seen_content = ''
            longest_stop_len = max([len(x) for x in stopping_strings] + [0])

            for a in generator:
                answer = a

                stop_string_found = False
                len_seen = len(seen_content)
                search_start = max(len_seen - longest_stop_len, 0)

                for string in stopping_strings:
                    idx = answer.find(string, search_start)
                    if idx != -1:
                        answer = answer[:idx]  # clip it.
                        stop_string_found = True

                if stop_string_found:
                    break

                # If something like "\nYo" is generated just before "\nYou:"
                # is completed, buffer and generate more, don't send it
                buffer_and_continue = False

                for string in stopping_strings:
                    for j in range(len(string) - 1, 0, -1):
                        if answer[-j:] == string[:j]:
                            buffer_and_continue = True
                            break
                    else:
                        continue
                    break

                if buffer_and_continue:
                    continue

                if is_streaming:
                    # Streaming
                    new_content = answer[len_seen:]

                    if not new_content or chr(0xfffd) in new_content:  # partial unicode character, don't send it yet.
                        continue

                    seen_content = answer
                    chunk = {
                        "id": cmpl_id,
                        "object": stream_object_type,
                        "created": created_time,
                        "model": shared.model_name,
                        resp_list: [{
                            "index": 0,
                            "finish_reason": None,
                        }],
                    }

                    # strip extra leading space off new generated content
                    if len_seen == 0 and new_content[0] == ' ':
                        new_content = new_content[1:]

                    if stream_object_type == 'text_completion.chunk':
                        chunk[resp_list][0]['text'] = new_content
                    else:
                        # So yeah... do both methods? delta and messages.
                        chunk[resp_list][0]['message'] = {'content': new_content}
                        chunk[resp_list][0]['delta'] = {'content': new_content}
                    response = 'data: ' + json.dumps(chunk) + '\r\n\r\n'
                    self.wfile.write(response.encode('utf-8'))
                    completion_token_count += len(encode(new_content)[0])

            if is_streaming:
                chunk = {
                    "id": cmpl_id,
                    "object": stream_object_type,
                    "created": created_time,
                    "model": model,  # TODO: add Lora info?
                    resp_list: [{
                        "index": 0,
                        "finish_reason": "stop",
                    }],
                    "usage": {
                        "prompt_tokens": token_count,
                        "completion_tokens": completion_token_count,
                        "total_tokens": token_count + completion_token_count
                    }
                }
                if stream_object_type == 'text_completion.chunk':
                    chunk[resp_list][0]['text'] = ''
                else:
                    # So yeah... do both methods? delta and messages.
                    chunk[resp_list][0]['message'] = {'content': ''}
                    chunk[resp_list][0]['delta'] = {'content': ''}

                response = 'data: ' + json.dumps(chunk) + '\r\n\r\ndata: [DONE]\r\n\r\n'
                self.wfile.write(response.encode('utf-8'))
                # Finished if streaming.
                if debug:
                    if answer and answer[0] == ' ':
                        answer = answer[1:]
                    print({'answer': answer}, chunk)
                return

            # strip extra leading space off new generated content
            if answer and answer[0] == ' ':
                answer = answer[1:]

            if debug:
                print({'response': answer})

            completion_token_count = len(encode(answer)[0])
            stop_reason = "stop"
            if token_count + completion_token_count >= truncation_length:
                stop_reason = "length"

            resp = {
                "id": cmpl_id,
                "object": object_type,
                "created": created_time,
                "model": model,  # TODO: add Lora info?
                resp_list: [{
                    "index": 0,
                    "finish_reason": stop_reason,
                }],
                "usage": {
                    "prompt_tokens": token_count,
                    "completion_tokens": completion_token_count,
                    "total_tokens": token_count + completion_token_count
                }
            }

            if is_chat_request:
                resp[resp_list][0]["message"] = {"role": "assistant", "content": answer}
            else:
                resp[resp_list][0]["text"] = answer

            response = json.dumps(resp)
            self.wfile.write(response.encode('utf-8'))

        elif '/edits' in self.path:
            if not shared.model:
                self.openai_error("No model loaded.")
                return

            self.send_response(200)
            self.send_access_control_headers()
            self.send_header('Content-Type', 'application/json')
            self.end_headers()

            created_time = int(time.time())

            # Using Alpaca format, this may work with other models too.
            instruction = body['instruction']
            input = body.get('input', '')

            # Request parameters
            req_params = default_req_params.copy()
            stopping_strings = []

            # Alpaca is verbose so a good default prompt
            default_template = (
                "Below is an instruction that describes a task, paired with an input that provides further context. "
                "Write a response that appropriately completes the request.\n\n"
                "### Instruction:\n{instruction}\n\n### Input:\n{input}\n\n### Response:\n"
            )

            instruction_template = default_template
            
            # Use the special instruction/input/response template for anything trained like Alpaca
            if shared.settings['instruction_template']:
                if 'Alpaca' in shared.settings['instruction_template']:
                    stopping_strings.extend(['\n###'])
                else:
                    try:
                        instruct = yaml.safe_load(open(f"characters/instruction-following/{shared.settings['instruction_template']}.yaml", 'r'))

                        template = instruct['turn_template']
                        template = template\
                            .replace('<|user|>', instruct.get('user', ''))\
                            .replace('<|bot|>', instruct.get('bot', ''))\
                            .replace('<|user-message|>', '{instruction}\n{input}')

                        instruction_template = instruct.get('context', '') + template[:template.find('<|bot-message|>')].rstrip(' ')
                        if instruct['user']:
                            stopping_strings.extend(['\n' + instruct['user'], instruct['user'] ])

                    except Exception as e:
                        instruction_template = default_template
                        print(f"Exception: When loading characters/instruction-following/{shared.settings['instruction_template']}.yaml: {repr(e)}")
                        print("Warning: Loaded default instruction-following template (Alpaca) for model.")
            else:
                stopping_strings.extend(['\n###'])
                print("Warning: Loaded default instruction-following template (Alpaca) for model.")
                

            edit_task = instruction_template.format(instruction=instruction, input=input)

            truncation_length = default(shared.settings, 'truncation_length', 2048)
            token_count = len(encode(edit_task)[0])
            max_tokens = truncation_length - token_count

            req_params['max_new_tokens'] = max_tokens
            req_params['truncation_length'] = truncation_length
            req_params['temperature'] = clamp(default(body, 'temperature', default_req_params['temperature']), 0.001, 1.999) # fixup absolute 0.0
            req_params['top_p'] = clamp(default(body, 'top_p', default_req_params['top_p']), 0.001, 1.0)
            req_params['seed'] = shared.settings.get('seed', default_req_params['seed'])
            req_params['add_bos_token'] = shared.settings.get('add_bos_token', default_req_params['add_bos_token'])

            if debug:
                print({'edit_template': edit_task, 'req_params': req_params, 'token_count': token_count})
            
            generator = generate_reply(edit_task, req_params, stopping_strings=stopping_strings, is_chat=False)

            longest_stop_len = max([len(x) for x in stopping_strings] + [0])
            answer = ''
            seen_content = ''
            for a in generator:
                answer = a

                stop_string_found = False
                len_seen = len(seen_content)
                search_start = max(len_seen - longest_stop_len, 0)

                for string in stopping_strings:
                    idx = answer.find(string, search_start)
                    if idx != -1:
                        answer = answer[:idx]  # clip it.
                        stop_string_found = True

                if stop_string_found:
                    break


            # some reply's have an extra leading space to fit the instruction template, just clip it off from the reply.
            if edit_task[-1] != '\n' and answer and answer[0] == ' ':
                answer = answer[1:]

            completion_token_count = len(encode(answer)[0])

            resp = {
                "object": "edit",
                "created": created_time,
                "choices": [{
                    "text": answer,
                    "index": 0,
                }],
                "usage": {
                    "prompt_tokens": token_count,
                    "completion_tokens": completion_token_count,
                    "total_tokens": token_count + completion_token_count
                }
            }

            if debug:
                print({'answer': answer, 'completion_token_count': completion_token_count})

            response = json.dumps(resp)
            self.wfile.write(response.encode('utf-8'))

        elif '/images/generations' in self.path and 'SD_WEBUI_URL' in os.environ:
            # Stable Diffusion callout wrapper for txt2img
            # Low effort implementation for compatibility. With only "prompt" being passed and assuming DALL-E
            # the results will be limited and likely poor. SD has hundreds of models and dozens of settings.
            # If you want high quality tailored results you should just use the Stable Diffusion API directly.
            # it's too general an API to try and shape the result with specific tags like "masterpiece", etc,
            # Will probably work best with the stock SD models.
            # SD configuration is beyond the scope of this API.
            # At this point I will not add the edits and variations endpoints (ie. img2img) because they
            # require changing the form data handling to accept multipart form data, also to properly support
            # url return types will require file management and a web serving files... Perhaps later!

            self.send_response(200)
            self.send_access_control_headers()
            self.send_header('Content-Type', 'application/json')
            self.end_headers()

            width, height = [ int(x) for x in default(body, 'size', '1024x1024').split('x') ]  # ignore the restrictions on size
            response_format = default(body, 'response_format', 'url')  # or b64_json
            
            payload = {
                'prompt': body['prompt'],  # ignore prompt limit of 1000 characters
                'width': width,
                'height': height,
                'batch_size': default(body, 'n', 1)  # ignore the batch limits of max 10
            }

            resp = {
                'created': int(time.time()),
                'data': []
            }

            # TODO: support SD_WEBUI_AUTH username:password pair.
            sd_url = f"{os.environ['SD_WEBUI_URL']}/sdapi/v1/txt2img"

            response = requests.post(url=sd_url, json=payload)
            r = response.json()
            # r['parameters']...
            for b64_json in r['images']:
                if response_format == 'b64_json':
                    resp['data'].extend([{'b64_json': b64_json}])
                else:
                    resp['data'].extend([{'url': f'data:image/png;base64,{b64_json}'}])  # yeah it's lazy. requests.get() will not work with this

            response = json.dumps(resp)
            self.wfile.write(response.encode('utf-8'))

        elif '/embeddings' in self.path and embedding_model is not None:
            self.send_response(200)
            self.send_access_control_headers()
            self.send_header('Content-Type', 'application/json')
            self.end_headers()

            input = body['input'] if 'input' in body else body['text']
            if type(input) is str:
                input = [input]

            embeddings = embedding_model.encode(input).tolist()

            def enc_emb(emb):
                # If base64 is specified, encode. Otherwise, do nothing.
                if body.get("encoding_format", "") == "base64":
                    return float_list_to_base64(emb)
                else:
                    return emb
            data = [{"object": "embedding", "embedding": enc_emb(emb), "index": n} for n, emb in enumerate(embeddings)]

            response = json.dumps({
                "object": "list",
                "data": data,
                "model": st_model,  # return the real model
                "usage": {
                    "prompt_tokens": 0,
                    "total_tokens": 0,
                }
            })

            if debug:
                print(f"Embeddings return size: {len(embeddings[0])}, number: {len(embeddings)}")
            self.wfile.write(response.encode('utf-8'))

        elif '/moderations' in self.path:
            # for now do nothing, just don't error.
            self.send_response(200)
            self.send_access_control_headers()
            self.send_header('Content-Type', 'application/json')
            self.end_headers()

            response = json.dumps({
                "id": "modr-5MWoLO",
                "model": "text-moderation-001",
                "results": [{
                    "categories": {
                        "hate": False,
                        "hate/threatening": False,
                        "self-harm": False,
                        "sexual": False,
                        "sexual/minors": False,
                        "violence": False,
                        "violence/graphic": False
                    },
                    "category_scores": {
                        "hate": 0.0,
                        "hate/threatening": 0.0,
                        "self-harm": 0.0,
                        "sexual": 0.0,
                        "sexual/minors": 0.0,
                        "violence": 0.0,
                        "violence/graphic": 0.0
                    },
                    "flagged": False
                }]
            })
            self.wfile.write(response.encode('utf-8'))

        elif self.path == '/api/v1/token-count':
            # NOT STANDARD. lifted from the api extension, but it's still very useful to calculate tokenized length client side.
            self.send_response(200)
            self.send_access_control_headers()
            self.send_header('Content-Type', 'application/json')
            self.end_headers()

            tokens = encode(body['prompt'])[0]
            response = json.dumps({
                'results': [{
                    'tokens': len(tokens)
                }]
            })
            self.wfile.write(response.encode('utf-8'))

        else:
            print(self.path, self.headers)
            self.send_error(404)


def run_server():
    global embedding_model
    try:
        embedding_model = SentenceTransformer(st_model)
        print(f"\nLoaded embedding model: {st_model}, max sequence length: {embedding_model.max_seq_length}")
    except:
        print(f"\nFailed to load embedding model: {st_model}")
        pass

    server_addr = ('0.0.0.0' if shared.args.listen else '127.0.0.1', params['port'])
    server = ThreadingHTTPServer(server_addr, Handler)
    if shared.args.share:
        try:
            from flask_cloudflared import _run_cloudflared
            public_url = _run_cloudflared(params['port'], params['port'] + 1)
            print(f'Starting OpenAI compatible api at\nOPENAI_API_BASE={public_url}/v1')
        except ImportError:
            print('You should install flask_cloudflared manually')
    else:
        print(f'Starting OpenAI compatible api:\nOPENAI_API_BASE=http://{server_addr[0]}:{server_addr[1]}/v1')
        
    server.serve_forever()


def setup():
    Thread(target=run_server, daemon=True).start()