# Copyright (C) 2024-present Naver Corporation. All rights reserved. # Licensed under CC BY-NC-SA 4.0 (non-commercial use only). # # -------------------------------------------------------- # utilities for interpreting the DUST3R output # -------------------------------------------------------- import numpy as np import torch from dust3r.utils.geometry import xy_grid # 估计焦距f,即论文中的《3.3.Downstream Applications-Recovering intrinsics.》章节的公式 def estimate_focal_knowing_depth(pts3d, pp, focal_mode='median', min_focal=0.5, max_focal=3.5): """ Reprojection method, for when the absolute depth is known: 1) estimate the camera focal using a robust estimator 2) reproject points onto true rays, minimizing a certain error """ B, H, W, THREE = pts3d.shape assert THREE == 3 # pixels即论文中的图像坐标系下的坐标(i`,j`):i` = i - W/2 , j` = j - H/2 pixels = xy_grid(W, H, device=pts3d.device).view(1, -1, 2) - pp.view(-1, 1, 2) # B,HW,2 pts3d = pts3d.flatten(1, 2) # (B, H*W, 3) if focal_mode == 'median': with torch.no_grad(): # direct estimation of focal u, v = pixels.unbind(dim=-1) x, y, z = pts3d.unbind(dim=-1) fx_votes = (u * z) / x fy_votes = (v * z) / y # assume square pixels, hence same focal for X and Y f_votes = torch.cat((fx_votes.view(B, -1), fy_votes.view(B, -1)), dim=-1) focal = torch.nanmedian(f_votes, dim=-1).values elif focal_mode == 'weiszfeld': # 参考链接:https://blog.csdn.net/qianlinjun/article/details/53852306 # init focal with l2 closed form # we try to find focal = argmin Sum | pixel - focal * (x,y)/z| xy_over_z = (pts3d[..., :2] / pts3d[..., 2:3]).nan_to_num(posinf=0, neginf=0) # 转齐次坐标,即x,y除以z坐标 # 1、初始化第一轮迭代时的focal dot_xy_px = (xy_over_z * pixels).sum(dim=-1) dot_xy_xy = xy_over_z.square().sum(dim=-1) focal = dot_xy_px.mean(dim=1) / dot_xy_xy.mean(dim=1) # 2、基于weiszfeld算法迭代 # iterative re-weighted least-squares for iter in range(10): # re-weighting by inverse of distance dis = (pixels - focal.view(-1, 1, 1) * xy_over_z).norm(dim=-1) # norm:求第二范式 # print(dis.nanmean(-1)) w = dis.clip(min=1e-8).reciprocal() # 求倒数 # update the scaling with the new weights focal = (w * dot_xy_px).mean(dim=1) / (w * dot_xy_xy).mean(dim=1) else: raise ValueError(f'bad {focal_mode=}') focal_base = max(H, W) / (2 * np.tan(np.deg2rad(60) / 2)) # size / 1.1547005383792515 focal = focal.clip(min=min_focal*focal_base, max=max_focal*focal_base) # print(focal) return focal