# Copyright (C) 2024-present Naver Corporation. All rights reserved. # Licensed under CC BY-NC-SA 4.0 (non-commercial use only). # # -------------------------------------------------------- # croppping utilities # -------------------------------------------------------- import PIL.Image import os os.environ["OPENCV_IO_ENABLE_OPENEXR"] = "1" import cv2 # noqa import numpy as np # noqa from dust3r.utils.geometry import colmap_to_opencv_intrinsics, opencv_to_colmap_intrinsics # noqa try: lanczos = PIL.Image.Resampling.LANCZOS except AttributeError: lanczos = PIL.Image.LANCZOS class ImageList: """ Convenience class to aply the same operation to a whole set of images. """ def __init__(self, images): if not isinstance(images, (tuple, list, set)): images = [images] self.images = [] for image in images: if not isinstance(image, PIL.Image.Image): image = PIL.Image.fromarray(image) self.images.append(image) def __len__(self): return len(self.images) def to_pil(self): return tuple(self.images) if len(self.images) > 1 else self.images[0] @property def size(self): sizes = [im.size for im in self.images] assert all(sizes[0] == s for s in sizes) return sizes[0] def resize(self, *args, **kwargs): return ImageList(self._dispatch('resize', *args, **kwargs)) def crop(self, *args, **kwargs): return ImageList(self._dispatch('crop', *args, **kwargs)) def _dispatch(self, func, *args, **kwargs): return [getattr(im, func)(*args, **kwargs) for im in self.images] def rescale_image_depthmap(image, depthmap, camera_intrinsics, output_resolution): """ Jointly rescale a (image, depthmap) so that (out_width, out_height) >= output_res """ image = ImageList(image) input_resolution = np.array(image.size) # (W,H) output_resolution = np.array(output_resolution) if depthmap is not None: # can also use this with masks instead of depthmaps assert tuple(depthmap.shape[:2]) == image.size[::-1] assert output_resolution.shape == (2,) # define output resolution scale_final = max(output_resolution / image.size) + 1e-8 output_resolution = np.floor(input_resolution * scale_final).astype(int) # first rescale the image so that it contains the crop image = image.resize(output_resolution, resample=lanczos) if depthmap is not None: depthmap = cv2.resize(depthmap, output_resolution, fx=scale_final, fy=scale_final, interpolation=cv2.INTER_NEAREST) # no offset here; simple rescaling camera_intrinsics = camera_matrix_of_crop( camera_intrinsics, input_resolution, output_resolution, scaling=scale_final) return image.to_pil(), depthmap, camera_intrinsics def camera_matrix_of_crop(input_camera_matrix, input_resolution, output_resolution, scaling=1, offset_factor=0.5, offset=None): # Margins to offset the origin margins = np.asarray(input_resolution) * scaling - output_resolution assert np.all(margins >= 0.0) if offset is None: offset = offset_factor * margins # Generate new camera parameters output_camera_matrix_colmap = opencv_to_colmap_intrinsics(input_camera_matrix) output_camera_matrix_colmap[:2, :] *= scaling output_camera_matrix_colmap[:2, 2] -= offset output_camera_matrix = colmap_to_opencv_intrinsics(output_camera_matrix_colmap) return output_camera_matrix def crop_image_depthmap(image, depthmap, camera_intrinsics, crop_bbox): """ Return a crop of the input view. """ image = ImageList(image) l, t, r, b = crop_bbox image = image.crop((l, t, r, b)) depthmap = depthmap[t:b, l:r] camera_intrinsics = camera_intrinsics.copy() camera_intrinsics[0, 2] -= l camera_intrinsics[1, 2] -= t return image.to_pil(), depthmap, camera_intrinsics def bbox_from_intrinsics_in_out(input_camera_matrix, output_camera_matrix, output_resolution): out_width, out_height = output_resolution l, t = np.int32(np.round(input_camera_matrix[:2, 2] - output_camera_matrix[:2, 2])) crop_bbox = (l, t, l+out_width, t+out_height) return crop_bbox