import os import glob import torch import numpy as np import imageio import json import torch.nn.functional as F import cv2 trans_t = lambda t : torch.Tensor([ [1,0,0,0], [0,1,0,0], [0,0,1,t], [0,0,0,1]]).float() rot_phi = lambda phi : torch.Tensor([ [1,0,0,0], [0,np.cos(phi),-np.sin(phi),0], [0,np.sin(phi), np.cos(phi),0], [0,0,0,1]]).float() rot_theta = lambda th : torch.Tensor([ [np.cos(th),0,-np.sin(th),0], [0,1,0,0], [np.sin(th),0, np.cos(th),0], [0,0,0,1]]).float() def pose_spherical(theta, phi, radius): c2w = trans_t(radius) c2w = rot_phi(phi/180.*np.pi) @ c2w c2w = rot_theta(theta/180.*np.pi) @ c2w c2w = torch.Tensor(np.array([[-1,0,0,0],[0,0,1,0],[0,1,0,0],[0,0,0,1]])) @ c2w c2w[:,[1,2]] *= -1 return c2w def load_nsvf_data(basedir): pose_paths = sorted(glob.glob(os.path.join(basedir, 'pose', '*txt'))) rgb_paths = sorted(glob.glob(os.path.join(basedir, 'rgb', '*png'))) all_poses = [] all_imgs = [] i_split = [[], [], []] for i, (pose_path, rgb_path) in enumerate(zip(pose_paths, rgb_paths)): i_set = int(os.path.split(rgb_path)[-1][0]) all_imgs.append((imageio.imread(rgb_path) / 255.).astype(np.float32)) all_poses.append(np.loadtxt(pose_path).astype(np.float32)) i_split[i_set].append(i) if i_split[2] == []: i_split[2] = i_split[1] imgs = np.stack(all_imgs, 0) poses = np.stack(all_poses, 0) H, W = imgs[0].shape[:2] with open(os.path.join(basedir, 'intrinsics.txt')) as f: focal = float(f.readline().split()[0]) R = np.sqrt((poses[...,:3,3]**2).sum(-1)).mean() render_poses = torch.stack([pose_spherical(angle, -30.0, R) for angle in np.linspace(-180,180,200+1)[:-1]], 0) return imgs, poses, render_poses, [H, W, focal], i_split