# Copyright (C) 2024-present Naver Corporation. All rights reserved. # Licensed under CC BY-NC-SA 4.0 (non-commercial use only). # # -------------------------------------------------------- # utilitary functions about images (loading/converting...) # -------------------------------------------------------- import os import torch import numpy as np import PIL.Image from PIL.ImageOps import exif_transpose import torchvision.transforms as tvf os.environ["OPENCV_IO_ENABLE_OPENEXR"] = "1" import cv2 # noqa try: from pillow_heif import register_heif_opener # noqa register_heif_opener() heif_support_enabled = True except ImportError: heif_support_enabled = False ImgNorm = tvf.Compose([tvf.ToTensor(), tvf.Normalize((0.5, 0.5, 0.5), (0.5, 0.5, 0.5))]) def imread_cv2(path, options=cv2.IMREAD_COLOR): """ Open an image or a depthmap with opencv-python. """ if path.endswith(('.exr', 'EXR')): options = cv2.IMREAD_ANYDEPTH img = cv2.imread(path, options) if img is None: raise IOError(f'Could not load image={path} with {options=}') if img.ndim == 3: img = cv2.cvtColor(img, cv2.COLOR_BGR2RGB) return img def rgb(ftensor, true_shape=None): if isinstance(ftensor, list): return [rgb(x, true_shape=true_shape) for x in ftensor] if isinstance(ftensor, torch.Tensor): ftensor = ftensor.detach().cpu().numpy() # H,W,3 if ftensor.ndim == 3 and ftensor.shape[0] == 3: ftensor = ftensor.transpose(1, 2, 0) elif ftensor.ndim == 4 and ftensor.shape[1] == 3: ftensor = ftensor.transpose(0, 2, 3, 1) if true_shape is not None: H, W = true_shape ftensor = ftensor[:H, :W] if ftensor.dtype == np.uint8: img = np.float32(ftensor) / 255 else: img = (ftensor * 0.5) + 0.5 return img.clip(min=0, max=1) def _resize_pil_image(img, long_edge_size): S = max(img.size) if S > long_edge_size: interp = PIL.Image.LANCZOS elif S <= long_edge_size: interp = PIL.Image.BICUBIC new_size = tuple(int(round(x*long_edge_size/S)) for x in img.size) return img.resize(new_size, interp) def load_images(folder_or_list, size, square_ok=False): """ open and convert all images in a list or folder to proper input format for DUSt3R """ if isinstance(folder_or_list, str): print(f'>> Loading images from {folder_or_list}') root, folder_content = folder_or_list, sorted(os.listdir(folder_or_list)) elif isinstance(folder_or_list, list): print(f'>> Loading a list of {len(folder_or_list)} images') root, folder_content = '', folder_or_list else: raise ValueError(f'bad {folder_or_list=} ({type(folder_or_list)})') supported_images_extensions = ['.jpg', '.jpeg', '.png'] if heif_support_enabled: supported_images_extensions += ['.heic', '.heif'] supported_images_extensions = tuple(supported_images_extensions) imgs = [] for path in folder_content: if not path.lower().endswith(supported_images_extensions): continue img = exif_transpose(PIL.Image.open(os.path.join(root, path))).convert('RGB') W1, H1 = img.size if size == 224: # resize short side to 224 (then crop) img = _resize_pil_image(img, round(size * max(W1/H1, H1/W1))) else: # resize long side to 512 img = _resize_pil_image(img, size) W, H = img.size cx, cy = W//2, H//2 if size == 224: half = min(cx, cy) img = img.crop((cx-half, cy-half, cx+half, cy+half)) else: halfw, halfh = ((2*cx)//16)*8, ((2*cy)//16)*8 if not (square_ok) and W == H: halfh = 3*halfw/4 img = img.crop((cx-halfw, cy-halfh, cx+halfw, cy+halfh)) W2, H2 = img.size print(f' - adding {path} with resolution {W1}x{H1} --> {W2}x{H2}') imgs.append(dict(img=ImgNorm(img)[None], true_shape=np.int32( [img.size[::-1]]), idx=len(imgs), instance=str(len(imgs)))) assert imgs, 'no images foud at '+root print(f' (Found {len(imgs)} images)') return imgs