_base_ = '../default.py' basedir = './logs/nerf_unbounded' data = dict( dataset_type='llff', spherify=True, factor=4, llffhold=8, white_bkgd=True, rand_bkgd=True, unbounded_inward=True, load2gpu_on_the_fly=True, ) coarse_train = dict(N_iters=0) fine_train = dict( N_iters=800000, N_rand=1024 * 4, lrate_decay=80, ray_sampler='flatten', weight_nearclip=1.0, weight_distortion=0.01, pg_scale=[2000,4000,6000,8000,10000,12000,14000,16000], tv_before=20000, tv_dense_before=20000, weight_tv_density=1e-6, weight_tv_k0=1e-7, ) alpha_init = 1e-4 stepsize = 0.5 fine_model_and_render = dict( num_voxels=320**3, num_voxels_base=160**3, alpha_init=alpha_init, stepsize=stepsize, fast_color_thres={ '_delete_': True, 0 : alpha_init*stepsize/10, 1500: min(alpha_init, 1e-4)*stepsize/5, 2500: min(alpha_init, 1e-4)*stepsize/2, 3500: min(alpha_init, 1e-4)*stepsize/1.5, 4500: min(alpha_init, 1e-4)*stepsize, 5500: min(alpha_init, 1e-4), 6500: 1e-4, }, world_bound_scale=1, )