# Copyright (C) 2024-present Naver Corporation. All rights reserved. # Licensed under CC BY-NC-SA 4.0 (non-commercial use only). # # -------------------------------------------------------- # Main class for the implementation of the global alignment # -------------------------------------------------------- import numpy as np import torch import torch.nn as nn from dust3r.cloud_opt.base_opt import BasePCOptimizer from dust3r.utils.geometry import xy_grid, geotrf from dust3r.utils.device import to_cpu, to_numpy class PointCloudOptimizer(BasePCOptimizer): """ Optimize a global scene, given a list of pairwise observations. Graph node: images Graph edges: observations = (pred1, pred2) """ def __init__(self, *args, optimize_pp=False, focal_break=20, **kwargs): super().__init__(*args, **kwargs) self.has_im_poses = True # by definition of this class self.focal_break = focal_break # adding thing to optimize self.im_depthmaps = nn.ParameterList(torch.randn(H, W)/10-3 for H, W in self.imshapes) # log(depth) self.im_poses = nn.ParameterList(self.rand_pose(self.POSE_DIM) for _ in range(self.n_imgs)) # camera poses self.im_focals = nn.ParameterList(torch.FloatTensor( [self.focal_break*np.log(max(H, W))]) for H, W in self.imshapes) # camera intrinsics self.im_pp = nn.ParameterList(torch.zeros((2,)) for _ in range(self.n_imgs)) # camera intrinsics self.im_pp.requires_grad_(optimize_pp) self.imshape = self.imshapes[0] im_areas = [h*w for h, w in self.imshapes] self.max_area = max(im_areas) # adding thing to optimize self.im_depthmaps = ParameterStack(self.im_depthmaps, is_param=True, fill=self.max_area) self.im_poses = ParameterStack(self.im_poses, is_param=True) self.im_focals = ParameterStack(self.im_focals, is_param=True) self.im_pp = ParameterStack(self.im_pp, is_param=True) self.register_buffer('_pp', torch.tensor([(w/2, h/2) for h, w in self.imshapes])) self.register_buffer('_grid', ParameterStack( [xy_grid(W, H, device=self.device) for H, W in self.imshapes], fill=self.max_area)) # pre-compute pixel weights self.register_buffer('_weight_i', ParameterStack( [self.conf_trf(self.conf_i[i_j]) for i_j in self.str_edges], fill=self.max_area)) self.register_buffer('_weight_j', ParameterStack( [self.conf_trf(self.conf_j[i_j]) for i_j in self.str_edges], fill=self.max_area)) # precompute self.register_buffer('_stacked_pred_i', ParameterStack(self.pred_i, self.str_edges, fill=self.max_area)) self.register_buffer('_stacked_pred_j', ParameterStack(self.pred_j, self.str_edges, fill=self.max_area)) self.register_buffer('_ei', torch.tensor([i for i, j in self.edges])) self.register_buffer('_ej', torch.tensor([j for i, j in self.edges])) self.total_area_i = sum([im_areas[i] for i, j in self.edges]) self.total_area_j = sum([im_areas[j] for i, j in self.edges]) def _check_all_imgs_are_selected(self, msk): assert np.all(self._get_msk_indices(msk) == np.arange(self.n_imgs)), 'incomplete mask!' def preset_pose(self, known_poses, pose_msk=None): # cam-to-world self._check_all_imgs_are_selected(pose_msk) if isinstance(known_poses, torch.Tensor) and known_poses.ndim == 2: known_poses = [known_poses] for idx, pose in zip(self._get_msk_indices(pose_msk), known_poses): print(f' (setting pose #{idx} = {pose[:3,3]})') self._no_grad(self._set_pose(self.im_poses, idx, torch.tensor(pose))) # normalize scale if there's less than 1 known pose n_known_poses = sum((p.requires_grad is False) for p in self.im_poses) self.norm_pw_scale = (n_known_poses <= 1) self.im_poses.requires_grad_(False) self.norm_pw_scale = False def preset_focal(self, known_focals, msk=None): self._check_all_imgs_are_selected(msk) for idx, focal in zip(self._get_msk_indices(msk), known_focals): print(f' (setting focal #{idx} = {focal})') self._no_grad(self._set_focal(idx, focal)) self.im_focals.requires_grad_(False) def preset_principal_point(self, known_pp, msk=None): self._check_all_imgs_are_selected(msk) for idx, pp in zip(self._get_msk_indices(msk), known_pp): print(f' (setting principal point #{idx} = {pp})') self._no_grad(self._set_principal_point(idx, pp)) self.im_pp.requires_grad_(False) def _get_msk_indices(self, msk): if msk is None: return range(self.n_imgs) elif isinstance(msk, int): return [msk] elif isinstance(msk, (tuple, list)): return self._get_msk_indices(np.array(msk)) elif msk.dtype in (bool, torch.bool, np.bool_): assert len(msk) == self.n_imgs return np.cumsum([0] + msk.tolist()) elif np.issubdtype(msk.dtype, np.integer): return msk else: raise ValueError(f'bad {msk=}') def _no_grad(self, tensor): assert tensor.requires_grad, 'it must be True at this point, otherwise no modification occurs' def _set_focal(self, idx, focal, force=False): param = self.im_focals[idx] if param.requires_grad or force: # can only init a parameter not already initialized param.data[:] = self.focal_break * np.log(focal) return param def get_focals(self): # 论文中Recovering intrinsics章节:求内参矩阵(即焦距) log_focals = torch.stack(list(self.im_focals), dim=0) return (log_focals / self.focal_break).exp() def get_known_focal_mask(self): return torch.tensor([not (p.requires_grad) for p in self.im_focals]) def _set_principal_point(self, idx, pp, force=False): param = self.im_pp[idx] H, W = self.imshapes[idx] if param.requires_grad or force: # can only init a parameter not already initialized param.data[:] = to_cpu(to_numpy(pp) - (W/2, H/2)) / 10 return param def get_principal_points(self): return self._pp + 10 * self.im_pp # 将图像坐标系和像素坐标系的中心点偏移量 def get_intrinsics(self): K = torch.zeros((self.n_imgs, 3, 3), device=self.device) focals = self.get_focals().flatten() K[:, 0, 0] = K[:, 1, 1] = focals K[:, :2, 2] = self.get_principal_points() K[:, 2, 2] = 1 return K def get_im_poses(self): # cam to world 外参数矩阵的逆 cam2world = self._get_poses(self.im_poses) return cam2world def _set_depthmap(self, idx, depth, force=False): depth = _ravel_hw(depth, self.max_area) param = self.im_depthmaps[idx] if param.requires_grad or force: # can only init a parameter not already initialized param.data[:] = depth.log().nan_to_num(neginf=0) return param def get_depthmaps(self, raw=False): #论文中公式(1)上面的的深度信息D res = self.im_depthmaps.exp() if not raw: res = [dm[:h*w].view(h, w) for dm, (h, w) in zip(res, self.imshapes)] return res def depth_to_pts3d(self): # 这里根据深度信息D计算真实的世界坐标系下的点,即论文中公式(1)上面的公式 # Get depths and projection params if not provided focals = self.get_focals() # 论文中Recovering intrinsics章节:求内参矩阵(即焦距) pp = self.get_principal_points() # 图像坐标系和像素坐标系之间的偏移,即照片宽高的一半 im_poses = self.get_im_poses() # 外参数矩阵 depth = self.get_depthmaps(raw=True)#论文中公式(1)上面的深度信息D # get pointmaps in camera frame self._grid:输入的所有图像(图像坐标系) rel_ptmaps = _fast_depthmap_to_pts3d(depth, self._grid, focals, pp=pp) # 将输入图像的坐标点转成相机坐标系下的点 # project to world frame return geotrf(im_poses, rel_ptmaps) # 再由相机坐标系转成世界坐标系 def get_pts3d(self, raw=False): # 计算真实的世界坐标系下的三维点坐标,根据公式(1)上面的深度D计算公式计算 res = self.depth_to_pts3d() if not raw: res = [dm[:h*w].view(h, w, 3) for dm, (h, w) in zip(res, self.imshapes)] return res # 这里的forward返回的就是公式(5)计算的损失值 def forward(self): # 论文中: Global optimization pw_poses = self.get_pw_poses() # pw_poses cam-to-world 公式(5)的P_e: 外参矩阵的逆,由相机坐标系转成世界坐标系,requires_grad=True pw_adapt = self.get_adaptors().unsqueeze(1) # 公式(5)中的比例系数 sigma,requires_grad=False proj_pts3d = self.get_pts3d(raw=True) # im_poses 公式(5)的待优化的真实的世界坐标系下的三维点requires_grad=True # rotate pairwise prediction according to pw_poses 根据公式(5)的外参矩阵部分转成世界坐标系requires_grad=True aligned_pred_i = geotrf(pw_poses, pw_adapt * self._stacked_pred_i) # _stacked_pred_i/j表示dest3r预测的三维点云, requires_grad=False aligned_pred_j = geotrf(pw_poses, pw_adapt * self._stacked_pred_j) # compute the loss: 转换成世界坐标系后的两张图像分别与待估计世界坐标系下的点(proj_pts3d)计算损失 li = self.dist(proj_pts3d[self._ei], aligned_pred_i, weight=self._weight_i).sum() / self.total_area_i lj = self.dist(proj_pts3d[self._ej], aligned_pred_j, weight=self._weight_j).sum() / self.total_area_j return li + lj def _fast_depthmap_to_pts3d(depth, pixel_grid, focal, pp): pp = pp.unsqueeze(1) focal = focal.unsqueeze(1) assert focal.shape == (len(depth), 1, 1) assert pp.shape == (len(depth), 1, 2) assert pixel_grid.shape == depth.shape + (2,) depth = depth.unsqueeze(-1) return torch.cat((depth * (pixel_grid - pp) / focal, depth), dim=-1) # 公式(1)上面的计算公式,根据内参矩阵和深度D,将图像坐标系的点转成相机坐标系下的三维点 def ParameterStack(params, keys=None, is_param=None, fill=0): if keys is not None: params = [params[k] for k in keys] if fill > 0: params = [_ravel_hw(p, fill) for p in params] requires_grad = params[0].requires_grad assert all(p.requires_grad == requires_grad for p in params) params = torch.stack(list(params)).float().detach() if is_param or requires_grad: params = nn.Parameter(params) params.requires_grad_(requires_grad) return params def _ravel_hw(tensor, fill=0): # ravel H,W tensor = tensor.view((tensor.shape[0] * tensor.shape[1],) + tensor.shape[2:]) if len(tensor) < fill: tensor = torch.cat((tensor, tensor.new_zeros((fill - len(tensor),)+tensor.shape[1:]))) return tensor def acceptable_focal_range(H, W, minf=0.5, maxf=3.5): focal_base = max(H, W) / (2 * np.tan(np.deg2rad(60) / 2)) # size / 1.1547005383792515 return minf*focal_base, maxf*focal_base def apply_mask(img, msk): img = img.copy() img[msk] = 0 return img