# Copyright (C) 2024-present Naver Corporation. All rights reserved. # Licensed under CC BY-NC-SA 4.0 (non-commercial use only). # # -------------------------------------------------------- # utility functions for global alignment # -------------------------------------------------------- import torch import torch.nn as nn import numpy as np def edge_str(i, j): return f'{i}_{j}' def i_j_ij(ij): return edge_str(*ij), ij def edge_conf(conf_i, conf_j, edge): return float(conf_i[edge].mean() * conf_j[edge].mean()) # edge对应的两张图片经dust3r输出的置信度,分别对两张图片所有像素点的置信度取平均值再相乘,作为当前edge的置信度 def compute_edge_scores(edges, conf_i, conf_j):# edge对应的两张图片经dust3r会输出两个置信度矩阵,分别对两张图片所有像素点的置信度取平均值再相乘,作为当前edge的置信度 return {(i, j): edge_conf(conf_i, conf_j, e) for e, (i, j) in edges} def NoGradParamDict(x): assert isinstance(x, dict) return nn.ParameterDict(x).requires_grad_(False) def get_imshapes(edges, pred_i, pred_j): n_imgs = max(max(e) for e in edges) + 1 imshapes = [None] * n_imgs for e, (i, j) in enumerate(edges): shape_i = tuple(pred_i[e].shape[0:2]) shape_j = tuple(pred_j[e].shape[0:2]) if imshapes[i]: assert imshapes[i] == shape_i, f'incorrect shape for image {i}' if imshapes[j]: assert imshapes[j] == shape_j, f'incorrect shape for image {j}' imshapes[i] = shape_i imshapes[j] = shape_j return imshapes def get_conf_trf(mode): if mode == 'log': def conf_trf(x): return x.log() elif mode == 'sqrt': def conf_trf(x): return x.sqrt() elif mode == 'm1': def conf_trf(x): return x-1 elif mode in ('id', 'none'): def conf_trf(x): return x else: raise ValueError(f'bad mode for {mode=}') return conf_trf def l2_dist(a, b, weight): return ((a - b).square().sum(dim=-1) * weight) def l1_dist(a, b, weight): return ((a - b).norm(dim=-1) * weight) # torch.norm()是求范式的损失,默认是第二范式 ALL_DISTS = dict(l1=l1_dist, l2=l2_dist) def signed_log1p(x): sign = torch.sign(x) return sign * torch.log1p(torch.abs(x)) def signed_expm1(x): sign = torch.sign(x) return sign * torch.expm1(torch.abs(x)) def cosine_schedule(t, lr_start, lr_end): assert 0 <= t <= 1 return lr_end + (lr_start - lr_end) * (1+np.cos(t * np.pi))/2 def linear_schedule(t, lr_start, lr_end): assert 0 <= t <= 1 return lr_start + (lr_end - lr_start) * t