# Copyright (c) Meta Platforms, Inc. and affiliates. # All rights reserved. # This source code is licensed under the license found in the # LICENSE file in the root directory of this source tree. import logging import torch from hydra import compose from hydra.utils import instantiate from omegaconf import OmegaConf def build_sam2( config_file, ckpt_path=None, device="cuda", mode="eval", hydra_overrides_extra=[], apply_postprocessing=True, ): if apply_postprocessing: hydra_overrides_extra = hydra_overrides_extra.copy() hydra_overrides_extra += [ # dynamically fall back to multi-mask if the single mask is not stable "++model.sam_mask_decoder_extra_args.dynamic_multimask_via_stability=true", "++model.sam_mask_decoder_extra_args.dynamic_multimask_stability_delta=0.05", "++model.sam_mask_decoder_extra_args.dynamic_multimask_stability_thresh=0.98", ] # Read config and init model cfg = compose(config_name=config_file, overrides=hydra_overrides_extra) OmegaConf.resolve(cfg) model = instantiate(cfg.model, _recursive_=True) _load_checkpoint(model, ckpt_path) model = model.to(device) if mode == "eval": model.eval() return model def build_sam2_video_predictor( config_file, ckpt_path=None, device="cuda", mode="eval", hydra_overrides_extra=[], apply_postprocessing=True, ): print('... loading SAM2_Video from', ckpt_path) hydra_overrides = [ "++model._target_=sam2.sam2_video_predictor.SAM2VideoPredictor", ] if apply_postprocessing: hydra_overrides_extra = hydra_overrides_extra.copy() hydra_overrides_extra += [ # dynamically fall back to multi-mask if the single mask is not stable "++model.sam_mask_decoder_extra_args.dynamic_multimask_via_stability=true", "++model.sam_mask_decoder_extra_args.dynamic_multimask_stability_delta=0.05", "++model.sam_mask_decoder_extra_args.dynamic_multimask_stability_thresh=0.98", # the sigmoid mask logits on interacted frames with clicks in the memory encoder so that the encoded masks are exactly as what users see from clicking "++model.binarize_mask_from_pts_for_mem_enc=true", # fill small holes in the low-res masks up to `fill_hole_area` (before resizing them to the original video resolution) "++model.fill_hole_area=8", ] hydra_overrides.extend(hydra_overrides_extra) import os config_file = os.path.join(os.path.dirname(__file__), 'SAM2', 'sam2_configs') # Read config and init model cfg = compose(config_name=config_file, overrides=hydra_overrides) OmegaConf.resolve(cfg) model = instantiate(cfg.model, _recursive_=True) _load_checkpoint(model, ckpt_path) model = model.to(device) if mode == "eval": model.eval() return model def _load_checkpoint(model, ckpt_path): if ckpt_path is not None: sd = torch.load(ckpt_path, map_location="cpu")["model"] missing_keys, unexpected_keys = model.load_state_dict(sd) if missing_keys: logging.error(missing_keys) raise RuntimeError() if unexpected_keys: logging.error(unexpected_keys) raise RuntimeError() logging.info("Loaded checkpoint sucessfully")