Spaces:
Running
Running
# Copyright (C) 2024-present Naver Corporation. All rights reserved. | |
# Licensed under CC BY-NC-SA 4.0 (non-commercial use only). | |
# | |
# -------------------------------------------------------- | |
# Implementation of DUSt3R training losses | |
# -------------------------------------------------------- | |
from copy import copy, deepcopy | |
import torch | |
import torch.nn as nn | |
from dust3r.inference import get_pred_pts3d, find_opt_scaling | |
from dust3r.utils.geometry import inv, geotrf, normalize_pointcloud | |
from dust3r.utils.geometry import get_joint_pointcloud_depth, get_joint_pointcloud_center_scale | |
def Sum(*losses_and_masks): | |
loss, mask = losses_and_masks[0] | |
if loss.ndim > 0: | |
# we are actually returning the loss for every pixels | |
return losses_and_masks | |
else: | |
# we are returning the global loss | |
for loss2, mask2 in losses_and_masks[1:]: | |
loss = loss + loss2 | |
return loss | |
class LLoss (nn.Module): | |
""" L-norm loss | |
""" | |
def __init__(self, reduction='mean'): | |
super().__init__() | |
self.reduction = reduction | |
def forward(self, a, b): | |
assert a.shape == b.shape and a.ndim >= 2 and 1 <= a.shape[-1] <= 3, f'Bad shape = {a.shape}' | |
dist = self.distance(a, b) | |
assert dist.ndim == a.ndim-1 # one dimension less | |
if self.reduction == 'none': | |
return dist | |
if self.reduction == 'sum': | |
return dist.sum() | |
if self.reduction == 'mean': | |
return dist.mean() if dist.numel() > 0 else dist.new_zeros(()) | |
raise ValueError(f'bad {self.reduction=} mode') | |
def distance(self, a, b): | |
raise NotImplementedError() | |
class L21Loss (LLoss): | |
""" Euclidean distance between 3d points """ | |
def distance(self, a, b): | |
return torch.norm(a - b, dim=-1) # normalized L2 distance | |
L21 = L21Loss() | |
class Criterion (nn.Module): | |
def __init__(self, criterion=None): | |
super().__init__() | |
assert isinstance(criterion, LLoss), f'{criterion} is not a proper criterion!'+bb() | |
self.criterion = copy(criterion) | |
def get_name(self): | |
return f'{type(self).__name__}({self.criterion})' | |
def with_reduction(self, mode): | |
res = loss = deepcopy(self) | |
while loss is not None: | |
assert isinstance(loss, Criterion) | |
loss.criterion.reduction = 'none' # make it return the loss for each sample | |
loss = loss._loss2 # we assume loss is a Multiloss | |
return res | |
class MultiLoss (nn.Module): | |
""" Easily combinable losses (also keep track of individual loss values): | |
loss = MyLoss1() + 0.1*MyLoss2() | |
Usage: | |
Inherit from this class and override get_name() and compute_loss() | |
""" | |
def __init__(self): | |
super().__init__() | |
self._alpha = 1 | |
self._loss2 = None | |
def compute_loss(self, *args, **kwargs): | |
raise NotImplementedError() | |
def get_name(self): | |
raise NotImplementedError() | |
def __mul__(self, alpha): | |
assert isinstance(alpha, (int, float)) | |
res = copy(self) | |
res._alpha = alpha | |
return res | |
__rmul__ = __mul__ # same | |
def __add__(self, loss2): | |
assert isinstance(loss2, MultiLoss) | |
res = cur = copy(self) | |
# find the end of the chain | |
while cur._loss2 is not None: | |
cur = cur._loss2 | |
cur._loss2 = loss2 | |
return res | |
def __repr__(self): | |
name = self.get_name() | |
if self._alpha != 1: | |
name = f'{self._alpha:g}*{name}' | |
if self._loss2: | |
name = f'{name} + {self._loss2}' | |
return name | |
def forward(self, *args, **kwargs): | |
loss = self.compute_loss(*args, **kwargs) | |
if isinstance(loss, tuple): | |
loss, details = loss | |
elif loss.ndim == 0: | |
details = {self.get_name(): float(loss)} | |
else: | |
details = {} | |
loss = loss * self._alpha | |
if self._loss2: | |
loss2, details2 = self._loss2(*args, **kwargs) | |
loss = loss + loss2 | |
details |= details2 | |
return loss, details | |
class Regr3D (Criterion, MultiLoss): | |
""" Ensure that all 3D points are correct. | |
Asymmetric loss: view1 is supposed to be the anchor. | |
P1 = RT1 @ D1 | |
P2 = RT2 @ D2 | |
loss1 = (I @ pred_D1) - (RT1^-1 @ RT1 @ D1) | |
loss2 = (RT21 @ pred_D2) - (RT1^-1 @ P2) | |
= (RT21 @ pred_D2) - (RT1^-1 @ RT2 @ D2) | |
""" | |
def __init__(self, criterion, norm_mode='avg_dis', gt_scale=False): | |
super().__init__(criterion) | |
self.norm_mode = norm_mode | |
self.gt_scale = gt_scale | |
def get_all_pts3d(self, gt1, gt2, pred1, pred2, dist_clip=None): | |
# everything is normalized w.r.t. camera of view1 | |
in_camera1 = inv(gt1['camera_pose']) | |
gt_pts1 = geotrf(in_camera1, gt1['pts3d']) # B,H,W,3 | |
gt_pts2 = geotrf(in_camera1, gt2['pts3d']) # B,H,W,3 | |
valid1 = gt1['valid_mask'].clone() | |
valid2 = gt2['valid_mask'].clone() | |
if dist_clip is not None: | |
# points that are too far-away == invalid | |
dis1 = gt_pts1.norm(dim=-1) # (B, H, W) | |
dis2 = gt_pts2.norm(dim=-1) # (B, H, W) | |
valid1 = valid1 & (dis1 <= dist_clip) | |
valid2 = valid2 & (dis2 <= dist_clip) | |
pr_pts1 = get_pred_pts3d(gt1, pred1, use_pose=False) | |
pr_pts2 = get_pred_pts3d(gt2, pred2, use_pose=True) | |
# normalize 3d points | |
if self.norm_mode: | |
pr_pts1, pr_pts2 = normalize_pointcloud(pr_pts1, pr_pts2, self.norm_mode, valid1, valid2) | |
if self.norm_mode and not self.gt_scale: | |
gt_pts1, gt_pts2 = normalize_pointcloud(gt_pts1, gt_pts2, self.norm_mode, valid1, valid2) | |
return gt_pts1, gt_pts2, pr_pts1, pr_pts2, valid1, valid2, {} | |
def compute_loss(self, gt1, gt2, pred1, pred2, **kw): | |
gt_pts1, gt_pts2, pred_pts1, pred_pts2, mask1, mask2, monitoring = \ | |
self.get_all_pts3d(gt1, gt2, pred1, pred2, **kw) | |
# loss on img1 side | |
l1 = self.criterion(pred_pts1[mask1], gt_pts1[mask1]) | |
# loss on gt2 side | |
l2 = self.criterion(pred_pts2[mask2], gt_pts2[mask2]) | |
self_name = type(self).__name__ | |
details = {self_name+'_pts3d_1': float(l1.mean()), self_name+'_pts3d_2': float(l2.mean())} | |
return Sum((l1, mask1), (l2, mask2)), (details | monitoring) | |
class ConfLoss (MultiLoss): | |
""" Weighted regression by learned confidence. | |
Assuming the input pixel_loss is a pixel-level regression loss. | |
Principle: | |
high-confidence means high conf = 0.1 ==> conf_loss = x / 10 + alpha*log(10) | |
low confidence means low conf = 10 ==> conf_loss = x * 10 - alpha*log(10) | |
alpha: hyperparameter | |
""" | |
def __init__(self, pixel_loss, alpha=1): | |
super().__init__() | |
assert alpha > 0 | |
self.alpha = alpha | |
self.pixel_loss = pixel_loss.with_reduction('none') | |
def get_name(self): | |
return f'ConfLoss({self.pixel_loss})' | |
def get_conf_log(self, x): | |
return x, torch.log(x) | |
def compute_loss(self, gt1, gt2, pred1, pred2, **kw): | |
# compute per-pixel loss | |
((loss1, msk1), (loss2, msk2)), details = self.pixel_loss(gt1, gt2, pred1, pred2, **kw) | |
if loss1.numel() == 0: | |
print('NO VALID POINTS in img1', force=True) | |
if loss2.numel() == 0: | |
print('NO VALID POINTS in img2', force=True) | |
# weight by confidence | |
conf1, log_conf1 = self.get_conf_log(pred1['conf'][msk1]) | |
conf2, log_conf2 = self.get_conf_log(pred2['conf'][msk2]) | |
conf_loss1 = loss1 * conf1 - self.alpha * log_conf1 | |
conf_loss2 = loss2 * conf2 - self.alpha * log_conf2 | |
# average + nan protection (in case of no valid pixels at all) | |
conf_loss1 = conf_loss1.mean() if conf_loss1.numel() > 0 else 0 | |
conf_loss2 = conf_loss2.mean() if conf_loss2.numel() > 0 else 0 | |
return conf_loss1 + conf_loss2, dict(conf_loss_1=float(conf_loss1), conf_loss2=float(conf_loss2), **details) | |
class Regr3D_ShiftInv (Regr3D): | |
""" Same than Regr3D but invariant to depth shift. | |
""" | |
def get_all_pts3d(self, gt1, gt2, pred1, pred2): | |
# compute unnormalized points | |
gt_pts1, gt_pts2, pred_pts1, pred_pts2, mask1, mask2, monitoring = \ | |
super().get_all_pts3d(gt1, gt2, pred1, pred2) | |
# compute median depth | |
gt_z1, gt_z2 = gt_pts1[..., 2], gt_pts2[..., 2] | |
pred_z1, pred_z2 = pred_pts1[..., 2], pred_pts2[..., 2] | |
gt_shift_z = get_joint_pointcloud_depth(gt_z1, gt_z2, mask1, mask2)[:, None, None] | |
pred_shift_z = get_joint_pointcloud_depth(pred_z1, pred_z2, mask1, mask2)[:, None, None] | |
# subtract the median depth | |
gt_z1 -= gt_shift_z | |
gt_z2 -= gt_shift_z | |
pred_z1 -= pred_shift_z | |
pred_z2 -= pred_shift_z | |
# monitoring = dict(monitoring, gt_shift_z=gt_shift_z.mean().detach(), pred_shift_z=pred_shift_z.mean().detach()) | |
return gt_pts1, gt_pts2, pred_pts1, pred_pts2, mask1, mask2, monitoring | |
class Regr3D_ScaleInv (Regr3D): | |
""" Same than Regr3D but invariant to depth shift. | |
if gt_scale == True: enforce the prediction to take the same scale than GT | |
""" | |
def get_all_pts3d(self, gt1, gt2, pred1, pred2): | |
# compute depth-normalized points | |
gt_pts1, gt_pts2, pred_pts1, pred_pts2, mask1, mask2, monitoring = super().get_all_pts3d(gt1, gt2, pred1, pred2) | |
# measure scene scale | |
_, gt_scale = get_joint_pointcloud_center_scale(gt_pts1, gt_pts2, mask1, mask2) | |
_, pred_scale = get_joint_pointcloud_center_scale(pred_pts1, pred_pts2, mask1, mask2) | |
# prevent predictions to be in a ridiculous range | |
pred_scale = pred_scale.clip(min=1e-3, max=1e3) | |
# subtract the median depth | |
if self.gt_scale: | |
pred_pts1 *= gt_scale / pred_scale | |
pred_pts2 *= gt_scale / pred_scale | |
# monitoring = dict(monitoring, pred_scale=(pred_scale/gt_scale).mean()) | |
else: | |
gt_pts1 /= gt_scale | |
gt_pts2 /= gt_scale | |
pred_pts1 /= pred_scale | |
pred_pts2 /= pred_scale | |
# monitoring = dict(monitoring, gt_scale=gt_scale.mean(), pred_scale=pred_scale.mean().detach()) | |
return gt_pts1, gt_pts2, pred_pts1, pred_pts2, mask1, mask2, monitoring | |
class Regr3D_ScaleShiftInv (Regr3D_ScaleInv, Regr3D_ShiftInv): | |
# calls Regr3D_ShiftInv first, then Regr3D_ScaleInv | |
pass | |