File size: 25,022 Bytes
00fc29f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
import cv2
import numpy as np
import os
import torch
from torchvision.transforms.functional import normalize

from facexlib.detection import init_detection_model
from facexlib.parsing import init_parsing_model
from facexlib.utils.misc import img2tensor, imwrite

from .file import load_file_from_url


def get_largest_face(det_faces, h, w):
    def get_location(val, length):
        if val < 0:
            return 0
        elif val > length:
            return length
        else:
            return val

    face_areas = []
    for det_face in det_faces:
        left = get_location(det_face[0], w)
        right = get_location(det_face[2], w)
        top = get_location(det_face[1], h)
        bottom = get_location(det_face[3], h)
        face_area = (right - left) * (bottom - top)
        face_areas.append(face_area)
    largest_idx = face_areas.index(max(face_areas))
    return det_faces[largest_idx], largest_idx


def get_center_face(det_faces, h=0, w=0, center=None):
    if center is not None:
        center = np.array(center)
    else:
        center = np.array([w / 2, h / 2])
    center_dist = []
    for det_face in det_faces:
        face_center = np.array([(det_face[0] + det_face[2]) / 2, (det_face[1] + det_face[3]) / 2])
        dist = np.linalg.norm(face_center - center)
        center_dist.append(dist)
    center_idx = center_dist.index(min(center_dist))
    return det_faces[center_idx], center_idx


class FaceRestoreHelper(object):
    """面部修复管道的辅助工具(基类)。"""

    def __init__(self,

                 upscale_factor,

                 face_size=512,

                 crop_ratio=(1, 1),

                 det_model='retinaface_resnet50',

                 save_ext='png',

                 template_3points=False,

                 pad_blur=False,

                 use_parse=False,

                 device=None):
        self.template_3points = template_3points  # 提高鲁棒性
        self.upscale_factor = int(upscale_factor)
        # 基于方形脸的裁剪脸部比例
        self.crop_ratio = crop_ratio  # (h, w)
        assert (self.crop_ratio[0] >= 1 and self.crop_ratio[1] >= 1), 'crop ration only supports >=1'
        self.face_size = (int(face_size * self.crop_ratio[1]), int(face_size * self.crop_ratio[0]))
        self.det_model = det_model

        if self.det_model == 'dlib':
            # 标准 5 个标定,用于 1024 x 1024 的 FFHQ 人脸
            self.face_template = np.array([[686.77227723, 488.62376238], [586.77227723, 493.59405941],
                                           [337.91089109, 488.38613861], [437.95049505, 493.51485149],
                                           [513.58415842, 678.5049505]])
            self.face_template = self.face_template / (1024 // face_size)
        elif self.template_3points:
            self.face_template = np.array([[192, 240], [319, 240], [257, 371]])
        else:
            # 标准 5 个标定,用于 512 x 512 的 FFHQ 人脸
            # facexlib
            self.face_template = np.array([[192.98138, 239.94708], [318.90277, 240.1936], [256.63416, 314.01935],
                                           [201.26117, 371.41043], [313.08905, 371.15118]])

            # dlib: left_eye: 36:41  right_eye: 42:47  nose: 30,32,33,34  left mouth corner: 48  right mouth corner: 54
            # self.face_template = np.array([[193.65928, 242.98541], [318.32558, 243.06108], [255.67984, 328.82894],
            #                                 [198.22603, 372.82502], [313.91018, 372.75659]])

        self.face_template = self.face_template * (face_size / 512.0)
        if self.crop_ratio[0] > 1:
            self.face_template[:, 1] += face_size * (self.crop_ratio[0] - 1) / 2
        if self.crop_ratio[1] > 1:
            self.face_template[:, 0] += face_size * (self.crop_ratio[1] - 1) / 2
        self.save_ext = save_ext
        self.pad_blur = pad_blur
        if self.pad_blur is True:
            self.template_3points = False

        self.all_landmarks_5 = []
        self.det_faces = []
        self.affine_matrices = []
        self.inverse_affine_matrices = []
        self.cropped_faces = []
        self.restored_faces = []
        self.pad_input_imgs = []

        if device is None:
            self.device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
            # self.device = get_device()
        else:
            self.device = device

        # 启动人脸检测模型
        self.face_detector = init_detection_model(det_model, half=False, device=self.device)

        # 启动人脸识别模型
        self.use_parse = use_parse
        self.face_parse = init_parsing_model(model_name='parsenet', device=self.device)

    def set_upscale_factor(self, upscale_factor):
        self.upscale_factor = upscale_factor

    def read_image(self, img):
        """img can be image path or cv2 loaded image."""
        # self.input_img is Numpy array, (h, w, c), BGR, uint8, [0, 255]
        if isinstance(img, str):
            img = cv2.imread(img)

        if np.max(img) > 256:  # 16-bit 图
            img = img / 65535 * 255
        if len(img.shape) == 2:  # 灰度图
            img = cv2.cvtColor(img, cv2.COLOR_GRAY2BGR)
        elif img.shape[2] == 4:  # BGRA 图像(包含 Alpha 通道)
            img = img[:, :, 0:3]

        self.input_img = img
        # self.is_gray = is_gray(img, threshold=10)
        # if self.is_gray:
        #     print('Grayscale input: True')

        if min(self.input_img.shape[:2]) < 512:
            f = 512.0 / min(self.input_img.shape[:2])
            self.input_img = cv2.resize(self.input_img, (0, 0), fx=f, fy=f, interpolation=cv2.INTER_LINEAR)

    def init_dlib(self, detection_path, landmark5_path):
        """初始化 dlib 检测器和预测器。"""
        try:
            import dlib
        except ImportError:
            print('请运行以下命令安装 dlib:' 'conda install -c conda-forge dlib')
        detection_path = load_file_from_url(url=detection_path, model_dir='weights/dlib', progress=True, file_name=None)
        landmark5_path = load_file_from_url(url=landmark5_path, model_dir='weights/dlib', progress=True, file_name=None)
        face_detector = dlib.cnn_face_detection_model_v1(detection_path)
        shape_predictor_5 = dlib.shape_predictor(landmark5_path)
        return face_detector, shape_predictor_5

    def get_face_landmarks_5_dlib(self,

                                  only_keep_largest=False,

                                  scale=1):
        det_faces = self.face_detector(self.input_img, scale)

        if len(det_faces) == 0:
            print('未检测到人脸。尝试增加 upsample_num_times。')
            return 0
        else:
            if only_keep_largest:
                print('检测多个面孔,只保留最大的一个。')
                face_areas = []
                for i in range(len(det_faces)):
                    face_area = (det_faces[i].rect.right() - det_faces[i].rect.left()) * (
                            det_faces[i].rect.bottom() - det_faces[i].rect.top())
                    face_areas.append(face_area)
                largest_idx = face_areas.index(max(face_areas))
                self.det_faces = [det_faces[largest_idx]]
            else:
                self.det_faces = det_faces

        if len(self.det_faces) == 0:
            return 0

        for face in self.det_faces:
            shape = self.shape_predictor_5(self.input_img, face.rect)
            landmark = np.array([[part.x, part.y] for part in shape.parts()])
            self.all_landmarks_5.append(landmark)

        return len(self.all_landmarks_5)

    def get_face_landmarks_5(self,

                             only_keep_largest=False,

                             only_center_face=False,

                             resize=None,

                             blur_ratio=0.01,

                             eye_dist_threshold=None):
        if self.det_model == 'dlib':
            return self.get_face_landmarks_5_dlib(only_keep_largest)

        if resize is None:
            scale = 1
            input_img = self.input_img
        else:
            h, w = self.input_img.shape[0:2]
            scale = resize / min(h, w)
            scale = max(1, scale)  # 始终扩大规模
            h, w = int(h * scale), int(w * scale)
            interp = cv2.INTER_AREA if scale < 1 else cv2.INTER_LINEAR
            input_img = cv2.resize(self.input_img, (w, h), interpolation=interp)

        with torch.no_grad():
            bboxes = self.face_detector.detect_faces(input_img)

        if bboxes is None or bboxes.shape[0] == 0:
            return 0
        else:
            bboxes = bboxes / scale

        for bbox in bboxes:
            # 移除眼距过小的面孔:侧脸或过小的面孔
            eye_dist = np.linalg.norm([bbox[6] - bbox[8], bbox[7] - bbox[9]])
            if eye_dist_threshold is not None and (eye_dist < eye_dist_threshold):
                continue

            if self.template_3points:
                landmark = np.array([[bbox[i], bbox[i + 1]] for i in range(5, 11, 2)])
            else:
                landmark = np.array([[bbox[i], bbox[i + 1]] for i in range(5, 15, 2)])
            self.all_landmarks_5.append(landmark)
            self.det_faces.append(bbox[0:5])

        if len(self.det_faces) == 0:
            return 0
        if only_keep_largest:
            h, w, _ = self.input_img.shape
            self.det_faces, largest_idx = get_largest_face(self.det_faces, h, w)
            self.all_landmarks_5 = [self.all_landmarks_5[largest_idx]]
        elif only_center_face:
            h, w, _ = self.input_img.shape
            self.det_faces, center_idx = get_center_face(self.det_faces, h, w)
            self.all_landmarks_5 = [self.all_landmarks_5[center_idx]]

        # 图像模糊
        if self.pad_blur:
            self.pad_input_imgs = []
            for landmarks in self.all_landmarks_5:
                # 获取地标
                eye_left = landmarks[0, :]
                eye_right = landmarks[1, :]
                eye_avg = (eye_left + eye_right) * 0.5
                mouth_avg = (landmarks[3, :] + landmarks[4, :]) * 0.5
                eye_to_eye = eye_right - eye_left
                eye_to_mouth = mouth_avg - eye_avg

                # 获取定向裁剪矩形
                # x: 定向裁剪矩形的一半宽度
                x = eye_to_eye - np.flipud(eye_to_mouth) * [-1, 1]
                #  - np.flipud(eye_to_mouth) * [-1, 1]: 顺时针旋转 90
                # norm with the hypotenuse: 得到方向
                x /= np.hypot(*x)  # 求直角三角形的斜边
                rect_scale = 1.5
                x *= max(np.hypot(*eye_to_eye) * 2.0 * rect_scale, np.hypot(*eye_to_mouth) * 1.8 * rect_scale)
                # y: 定向裁剪矩形的半高
                y = np.flipud(x) * [-1, 1]

                # c: 中心
                c = eye_avg + eye_to_mouth * 0.1
                # quad: (left_top, left_bottom, right_bottom, right_top)
                quad = np.stack([c - x - y, c - x + y, c + x + y, c + x - y])
                # qsize: 正方形边长
                qsize = np.hypot(*x) * 2
                border = max(int(np.rint(qsize * 0.1)), 3)

                # 获取垫子
                # pad: (width_left, height_top, width_right, height_bottom)
                pad = (int(np.floor(min(quad[:, 0]))), int(np.floor(min(quad[:, 1]))), int(np.ceil(max(quad[:, 0]))),
                       int(np.ceil(max(quad[:, 1]))))
                pad = [
                    max(-pad[0] + border, 1),
                    max(-pad[1] + border, 1),
                    max(pad[2] - self.input_img.shape[0] + border, 1),
                    max(pad[3] - self.input_img.shape[1] + border, 1)
                ]

                if max(pad) > 1:
                    # 垫图像
                    pad_img = np.pad(self.input_img, ((pad[1], pad[3]), (pad[0], pad[2]), (0, 0)), 'reflect')
                    # 修改地标坐标
                    landmarks[:, 0] += pad[0]
                    landmarks[:, 1] += pad[1]
                    # 模糊垫图像
                    h, w, _ = pad_img.shape
                    y, x, _ = np.ogrid[:h, :w, :1]
                    mask = np.maximum(1.0 - np.minimum(np.float32(x) / pad[0],
                                                       np.float32(w - 1 - x) / pad[2]),
                                      1.0 - np.minimum(np.float32(y) / pad[1],
                                                       np.float32(h - 1 - y) / pad[3]))
                    blur = int(qsize * blur_ratio)
                    if blur % 2 == 0:
                        blur += 1
                    blur_img = cv2.boxFilter(pad_img, 0, ksize=(blur, blur))
                    # blur_img = cv2.GaussianBlur(pad_img, (blur, blur), 0)

                    pad_img = pad_img.astype('float32')
                    pad_img += (blur_img - pad_img) * np.clip(mask * 3.0 + 1.0, 0.0, 1.0)
                    pad_img += (np.median(pad_img, axis=(0, 1)) - pad_img) * np.clip(mask, 0.0, 1.0)
                    pad_img = np.clip(pad_img, 0, 255)  # float32, [0, 255]
                    self.pad_input_imgs.append(pad_img)
                else:
                    self.pad_input_imgs.append(np.copy(self.input_img))

        return len(self.all_landmarks_5)

    def align_warp_face(self, save_cropped_path=None, border_mode='constant'):
        """

        用面模板对齐和翘曲面。

        """
        if self.pad_blur:
            assert len(self.pad_input_imgs) == len(
                self.all_landmarks_5), f'样子不匹配: {len(self.pad_input_imgs)}{len(self.all_landmarks_5)}'
        for idx, landmark in enumerate(self.all_landmarks_5):
            # 使用 5 个地标获取仿射矩阵
            # 使用 cv2.LMEDS 方法实现与 skimage 变换的等价性
            # ref: https://blog.csdn.net/yichxi/article/details/115827338
            affine_matrix = cv2.estimateAffinePartial2D(landmark, self.face_template, method=cv2.LMEDS)[0]
            self.affine_matrices.append(affine_matrix)
            # 扭曲和裁剪面孔
            if border_mode == 'constant':
                border_mode = cv2.BORDER_CONSTANT
            elif border_mode == 'reflect101':
                border_mode = cv2.BORDER_REFLECT101
            elif border_mode == 'reflect':
                border_mode = cv2.BORDER_REFLECT
            if self.pad_blur:
                input_img = self.pad_input_imgs[idx]
            else:
                input_img = self.input_img
            cropped_face = cv2.warpAffine(
                input_img, affine_matrix, self.face_size, borderMode=border_mode, borderValue=(135, 133, 132))  # gray
            self.cropped_faces.append(cropped_face)
            # 救救被剪掉的脸
            if save_cropped_path is not None:
                path = os.path.splitext(save_cropped_path)[0]
                save_path = f'{path}_{idx:02d}.{self.save_ext}'
                imwrite(cropped_face, save_path)

    def get_inverse_affine(self, save_inverse_affine_path=None):
        """获取反仿射矩阵"""
        for idx, affine_matrix in enumerate(self.affine_matrices):
            inverse_affine = cv2.invertAffineTransform(affine_matrix)
            inverse_affine *= self.upscale_factor
            self.inverse_affine_matrices.append(inverse_affine)
            # 保存反仿射矩阵
            if save_inverse_affine_path is not None:
                path, _ = os.path.splitext(save_inverse_affine_path)
                save_path = f'{path}_{idx:02d}.pth'
                torch.save(inverse_affine, save_path)

    def add_restored_face(self, restored_face, input_face=None):
        # if self.is_gray:
        #     restored_face = bgr2gray(restored_face) # convert img into grayscale
        #     if input_face is not None:
        #         restored_face = adain_npy(restored_face, input_face) # transfer the color
        self.restored_faces.append(restored_face)

    def paste_faces_to_input_image(self, save_path=None, upsample_img=None, draw_box=False, face_upsampler=None):
        h, w, _ = self.input_img.shape
        h_up, w_up = int(h * self.upscale_factor), int(w * self.upscale_factor)

        if upsample_img is None:
            # 只需调整背景大小
            # upsample_img = cv2.resize(self.input_img, (w_up, h_up), interpolation=cv2.INTER_LANCZOS4)
            upsample_img = cv2.resize(self.input_img, (w_up, h_up), interpolation=cv2.INTER_LINEAR)
        else:
            upsample_img = cv2.resize(upsample_img, (w_up, h_up), interpolation=cv2.INTER_LANCZOS4)

        assert len(self.restored_faces) == len(
            self.inverse_affine_matrices), ('restored_faces 和 affine_matrices 的长度不同。')

        inv_mask_borders = []
        for restored_face, inverse_affine in zip(self.restored_faces, self.inverse_affine_matrices):
            if face_upsampler is not None:
                restored_face = face_upsampler.enhance(restored_face, outscale=self.upscale_factor)[0]
                inverse_affine /= self.upscale_factor
                inverse_affine[:, 2] *= self.upscale_factor
                face_size = (self.face_size[0] * self.upscale_factor, self.face_size[1] * self.upscale_factor)
            else:
                # 为反仿射矩阵添加偏移量,以实现更精确的背面对齐
                if self.upscale_factor > 1:
                    extra_offset = 0.5 * self.upscale_factor
                else:
                    extra_offset = 0
                inverse_affine[:, 2] += extra_offset
                face_size = self.face_size
            inv_restored = cv2.warpAffine(restored_face, inverse_affine, (w_up, h_up))

            # if draw_box or not self.use_parse:  # 使用方形解析图
            #     mask = np.ones(face_size, dtype=np.float32)
            #     inv_mask = cv2.warpAffine(mask, inverse_affine, (w_up, h_up))
            #     # 去除黑色边框
            #     inv_mask_erosion = cv2.erode(
            #         inv_mask, np.ones((int(2 * self.upscale_factor), int(2 * self.upscale_factor)), np.uint8))
            #     pasted_face = inv_mask_erosion[:, :, None] * inv_restored
            #     total_face_area = np.sum(inv_mask_erosion)  # // 3
            #     # 添加边框
            #     if draw_box:
            #         h, w = face_size
            #         mask_border = np.ones((h, w, 3), dtype=np.float32)
            #         border = int(1400/np.sqrt(total_face_area))
            #         mask_border[border:h-border, border:w-border,:] = 0
            #         inv_mask_border = cv2.warpAffine(mask_border, inverse_affine, (w_up, h_up))
            #         inv_mask_borders.append(inv_mask_border)
            #     if not self.use_parse:
            #         # 根据人脸区域计算融合边缘
            #         w_edge = int(total_face_area**0.5) // 20
            #         erosion_radius = w_edge * 2
            #         inv_mask_center = cv2.erode(inv_mask_erosion, np.ones((erosion_radius, erosion_radius), np.uint8))
            #         blur_size = w_edge * 2
            #         inv_soft_mask = cv2.GaussianBlur(inv_mask_center, (blur_size + 1, blur_size + 1), 0)
            #         if len(upsample_img.shape) == 2:  # upsample_img 为灰色图像
            #             upsample_img = upsample_img[:, :, None]
            #         inv_soft_mask = inv_soft_mask[:, :, None]

            # 始终使用方形遮罩
            mask = np.ones(face_size, dtype=np.float32)
            inv_mask = cv2.warpAffine(mask, inverse_affine, (w_up, h_up))
            # 去除黑色边框
            inv_mask_erosion = cv2.erode(
                inv_mask, np.ones((int(2 * self.upscale_factor), int(2 * self.upscale_factor)), np.uint8))
            pasted_face = inv_mask_erosion[:, :, None] * inv_restored
            total_face_area = np.sum(inv_mask_erosion)  # // 3
            # 添加边框
            if draw_box:
                h, w = face_size
                mask_border = np.ones((h, w, 3), dtype=np.float32)
                border = int(1400 / np.sqrt(total_face_area))
                mask_border[border:h - border, border:w - border, :] = 0
                inv_mask_border = cv2.warpAffine(mask_border, inverse_affine, (w_up, h_up))
                inv_mask_borders.append(inv_mask_border)
            # 根据人脸区域计算融合边缘
            w_edge = int(total_face_area ** 0.5) // 20
            erosion_radius = w_edge * 2
            inv_mask_center = cv2.erode(inv_mask_erosion, np.ones((erosion_radius, erosion_radius), np.uint8))
            blur_size = w_edge * 2
            inv_soft_mask = cv2.GaussianBlur(inv_mask_center, (blur_size + 1, blur_size + 1), 0)
            if len(upsample_img.shape) == 2:  # upsample_img 为灰色图像
                upsample_img = upsample_img[:, :, None]
            inv_soft_mask = inv_soft_mask[:, :, None]

            # 解析遮罩
            if self.use_parse:
                # 推论
                face_input = cv2.resize(restored_face, (512, 512), interpolation=cv2.INTER_LINEAR)
                face_input = img2tensor(face_input.astype('float32') / 255., bgr2rgb=True, float32=True)
                normalize(face_input, (0.5, 0.5, 0.5), (0.5, 0.5, 0.5), inplace=True)
                face_input = torch.unsqueeze(face_input, 0).to(self.device)
                with torch.no_grad():
                    out = self.face_parse(face_input)[0]
                out = out.argmax(dim=1).squeeze().cpu().numpy()

                parse_mask = np.zeros(out.shape)
                MASK_COLORMAP = [0, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 0, 255, 0, 0, 0]
                for idx, color in enumerate(MASK_COLORMAP):
                    parse_mask[out == idx] = color
                # 模糊遮罩
                parse_mask = cv2.GaussianBlur(parse_mask, (101, 101), 11)
                parse_mask = cv2.GaussianBlur(parse_mask, (101, 101), 11)
                # 去除黑色边框
                thres = 10
                parse_mask[:thres, :] = 0
                parse_mask[-thres:, :] = 0
                parse_mask[:, :thres] = 0
                parse_mask[:, -thres:] = 0
                parse_mask = parse_mask / 255.

                parse_mask = cv2.resize(parse_mask, face_size)
                parse_mask = cv2.warpAffine(parse_mask, inverse_affine, (w_up, h_up), flags=3)
                inv_soft_parse_mask = parse_mask[:, :, None]
                # pasted_face = inv_restored
                fuse_mask = (inv_soft_parse_mask < inv_soft_mask).astype('int')
                inv_soft_mask = inv_soft_parse_mask * fuse_mask + inv_soft_mask * (1 - fuse_mask)

            if len(upsample_img.shape) == 3 and upsample_img.shape[2] == 4:  # alpha 通道
                alpha = upsample_img[:, :, 3:]
                upsample_img = inv_soft_mask * pasted_face + (1 - inv_soft_mask) * upsample_img[:, :, 0:3]
                upsample_img = np.concatenate((upsample_img, alpha), axis=2)
            else:
                upsample_img = inv_soft_mask * pasted_face + (1 - inv_soft_mask) * upsample_img

        if np.max(upsample_img) > 256:  # 16-bit 图像
            upsample_img = upsample_img.astype(np.uint16)
        else:
            upsample_img = upsample_img.astype(np.uint8)

        # 绘制边界框
        if draw_box:
            # upsample_input_img = cv2.resize(input_img, (w_up, h_up))
            img_color = np.ones([*upsample_img.shape], dtype=np.float32)
            img_color[:, :, 0] = 0
            img_color[:, :, 1] = 255
            img_color[:, :, 2] = 0
            for inv_mask_border in inv_mask_borders:
                upsample_img = inv_mask_border * img_color + (1 - inv_mask_border) * upsample_img
                # upsample_input_img = inv_mask_border * img_color + (1 - inv_mask_border) * upsample_input_img

        if save_path is not None:
            path = os.path.splitext(save_path)[0]
            save_path = f'{path}.{self.save_ext}'
            imwrite(upsample_img, save_path)
        return upsample_img

    def clean_all(self):
        self.all_landmarks_5 = []
        self.restored_faces = []
        self.affine_matrices = []
        self.cropped_faces = []
        self.inverse_affine_matrices = []
        self.det_faces = []
        self.pad_input_imgs = []