Update app.py
Browse files
app.py
CHANGED
@@ -23,16 +23,11 @@ logging.basicConfig(level=logging.INFO,
|
|
23 |
API_ENDPOINT = "https://api.deepseek.com/user/balance"
|
24 |
TEST_MODEL_ENDPOINT = "https://api.deepseek.com/v1/chat/completions"
|
25 |
MODELS_ENDPOINT = "https://api.deepseek.com/v1/models"
|
26 |
-
EMBEDDINGS_ENDPOINT = "https://api.deepseek.com/v1/embeddings"
|
27 |
|
28 |
app = Flask(__name__)
|
29 |
|
30 |
text_models = []
|
31 |
free_text_models = []
|
32 |
-
embedding_models = []
|
33 |
-
free_embedding_models = []
|
34 |
-
image_models = []
|
35 |
-
free_image_models = []
|
36 |
|
37 |
invalid_keys_global = []
|
38 |
free_keys_global = []
|
@@ -78,6 +73,7 @@ def get_credit_summary(api_key):
|
|
78 |
exchange_rate = get_usd_to_cny_rate()
|
79 |
if exchange_rate is not None:
|
80 |
total_balance_cny += usd_balance * exchange_rate
|
|
|
81 |
else:
|
82 |
logging.warning(f"获取美元兑人民币汇率失败,无法转换美元余额,API Key:{api_key}")
|
83 |
total_balance_cny += usd_balance * 7.2
|
@@ -731,8 +727,8 @@ def billing_subscription():
|
|
731 |
"business_address": None
|
732 |
})
|
733 |
|
734 |
-
@app.route('/handsome/v1/
|
735 |
-
def
|
736 |
if not check_authorization(request):
|
737 |
return jsonify({"error": "Unauthorized"}), 401
|
738 |
|
@@ -741,11 +737,13 @@ def handsome_embeddings():
|
|
741 |
return jsonify({"error": "Invalid request data"}), 400
|
742 |
|
743 |
model_name = data['model']
|
|
|
744 |
request_type = determine_request_type(
|
745 |
model_name,
|
746 |
-
|
747 |
-
|
748 |
)
|
|
|
749 |
api_key = select_key(request_type, model_name)
|
750 |
|
751 |
if not api_key:
|
@@ -763,706 +761,86 @@ def handsome_embeddings():
|
|
763 |
"Authorization": f"Bearer {api_key}",
|
764 |
"Content-Type": "application/json"
|
765 |
}
|
766 |
-
|
767 |
try:
|
768 |
start_time = time.time()
|
769 |
response = requests.post(
|
770 |
-
|
771 |
headers=headers,
|
772 |
json=data,
|
773 |
-
|
|
|
774 |
)
|
775 |
|
776 |
if response.status_code == 429:
|
777 |
return jsonify(response.json()), 429
|
778 |
|
779 |
-
|
780 |
-
|
781 |
-
|
782 |
-
|
783 |
-
|
784 |
-
|
785 |
-
|
786 |
-
|
787 |
-
|
788 |
-
|
789 |
-
f"解析响应 JSON 失败: {e}, "
|
790 |
-
f"完整内容: {response_json}"
|
791 |
-
)
|
792 |
-
prompt_tokens = 0
|
793 |
-
embedding_data = []
|
794 |
-
|
795 |
-
logging.info(
|
796 |
-
f"使用的key: {api_key}, "
|
797 |
-
f"提示token: {prompt_tokens}, "
|
798 |
-
f"总共用时: {total_time:.4f}秒, "
|
799 |
-
f"使用的模型: {model_name}"
|
800 |
-
)
|
801 |
-
|
802 |
-
with data_lock:
|
803 |
-
request_timestamps.append(time.time())
|
804 |
-
token_counts.append(prompt_tokens)
|
805 |
-
|
806 |
-
return jsonify({
|
807 |
-
"object": "list",
|
808 |
-
"data": embedding_data,
|
809 |
-
"model": model_name,
|
810 |
-
"usage": {
|
811 |
-
"prompt_tokens": prompt_tokens,
|
812 |
-
"total_tokens": prompt_tokens
|
813 |
-
}
|
814 |
-
})
|
815 |
-
|
816 |
-
except requests.exceptions.RequestException as e:
|
817 |
-
return jsonify({"error": str(e)}), 500
|
818 |
-
|
819 |
-
@app.route('/handsome/v1/images/generations', methods=['POST'])
|
820 |
-
def handsome_images_generations():
|
821 |
-
if not check_authorization(request):
|
822 |
-
return jsonify({"error": "Unauthorized"}), 401
|
823 |
-
|
824 |
-
data = request.get_json()
|
825 |
-
if not data or 'model' not in data:
|
826 |
-
return jsonify({"error": "Invalid request data"}), 400
|
827 |
-
|
828 |
-
model_name = data.get('model')
|
829 |
-
|
830 |
-
request_type = determine_request_type(
|
831 |
-
model_name,
|
832 |
-
image_models,
|
833 |
-
free_image_models
|
834 |
-
)
|
835 |
-
|
836 |
-
api_key = select_key(request_type, model_name)
|
837 |
-
|
838 |
-
if not api_key:
|
839 |
-
return jsonify(
|
840 |
-
{
|
841 |
-
"error": (
|
842 |
-
"No available API key for this "
|
843 |
-
"request type or all keys have "
|
844 |
-
"reached their limits"
|
845 |
-
)
|
846 |
-
}
|
847 |
-
), 429
|
848 |
-
|
849 |
-
headers = {
|
850 |
-
"Authorization": f"Bearer {api_key}",
|
851 |
-
"Content-Type": "application/json"
|
852 |
-
}
|
853 |
-
|
854 |
-
response_data = {}
|
855 |
-
|
856 |
-
if "stable-diffusion" in model_name or model_name in ["black-forest-labs/FLUX.1-schnell", "Pro/black-forest-labs/FLUX.1-schnell","black-forest-labs/FLUX.1-dev", "black-forest-labs/FLUX.1-pro"]:
|
857 |
-
siliconflow_data = {
|
858 |
-
"model": model_name,
|
859 |
-
"prompt": data.get("prompt"),
|
860 |
-
|
861 |
-
}
|
862 |
-
|
863 |
-
if model_name == "black-forest-labs/FLUX.1-pro":
|
864 |
-
siliconflow_data["width"] = data.get("width", 1024)
|
865 |
-
siliconflow_data["height"] = data.get("height", 768)
|
866 |
-
siliconflow_data["prompt_upsampling"] = data.get("prompt_upsampling", False)
|
867 |
-
siliconflow_data["image_prompt"] = data.get("image_prompt")
|
868 |
-
siliconflow_data["steps"] = data.get("steps", 20)
|
869 |
-
siliconflow_data["guidance"] = data.get("guidance", 3)
|
870 |
-
siliconflow_data["safety_tolerance"] = data.get("safety_tolerance", 2)
|
871 |
-
siliconflow_data["interval"] = data.get("interval", 2)
|
872 |
-
siliconflow_data["output_format"] = data.get("output_format", "png")
|
873 |
-
seed = data.get("seed")
|
874 |
-
if isinstance(seed, int) and 0 < seed < 9999999999:
|
875 |
-
siliconflow_data["seed"] = seed
|
876 |
-
|
877 |
-
if siliconflow_data["width"] < 256 or siliconflow_data["width"] > 1440 or siliconflow_data["width"] % 32 != 0:
|
878 |
-
siliconflow_data["width"] = 1024
|
879 |
-
if siliconflow_data["height"] < 256 or siliconflow_data["height"] > 1440 or siliconflow_data["height"] % 32 != 0:
|
880 |
-
siliconflow_data["height"] = 768
|
881 |
-
|
882 |
-
if siliconflow_data["steps"] < 1 or siliconflow_data["steps"] > 50:
|
883 |
-
siliconflow_data["steps"] = 20
|
884 |
-
if siliconflow_data["guidance"] < 1.5 or siliconflow_data["guidance"] > 5:
|
885 |
-
siliconflow_data["guidance"] = 3
|
886 |
-
if siliconflow_data["safety_tolerance"] < 0 or siliconflow_data["safety_tolerance"] > 6:
|
887 |
-
siliconflow_data["safety_tolerance"] = 2
|
888 |
-
if siliconflow_data["interval"] < 1 or siliconflow_data["interval"] > 4 :
|
889 |
-
siliconflow_data["interval"] = 2
|
890 |
-
else:
|
891 |
-
siliconflow_data["image_size"] = data.get("image_size", "1024x1024")
|
892 |
-
siliconflow_data["prompt_enhancement"] = data.get("prompt_enhancement", False)
|
893 |
-
seed = data.get("seed")
|
894 |
-
if isinstance(seed, int) and 0 < seed < 9999999999:
|
895 |
-
siliconflow_data["seed"] = seed
|
896 |
-
|
897 |
-
if model_name not in ["black-forest-labs/FLUX.1-schnell", "Pro/black-forest-labs/FLUX.1-schnell"]:
|
898 |
-
siliconflow_data["batch_size"] = data.get("n", 1)
|
899 |
-
siliconflow_data["num_inference_steps"] = data.get("steps", 20)
|
900 |
-
siliconflow_data["guidance_scale"] = data.get("guidance_scale", 7.5)
|
901 |
-
siliconflow_data["negative_prompt"] = data.get("negative_prompt")
|
902 |
-
if siliconflow_data["batch_size"] < 1:
|
903 |
-
siliconflow_data["batch_size"] = 1
|
904 |
-
if siliconflow_data["batch_size"] > 4:
|
905 |
-
siliconflow_data["batch_size"] = 4
|
906 |
-
|
907 |
-
if siliconflow_data["num_inference_steps"] < 1:
|
908 |
-
siliconflow_data["num_inference_steps"] = 1
|
909 |
-
if siliconflow_data["num_inference_steps"] > 50:
|
910 |
-
siliconflow_data["num_inference_steps"] = 50
|
911 |
-
|
912 |
-
if siliconflow_data["guidance_scale"] < 0:
|
913 |
-
siliconflow_data["guidance_scale"] = 0
|
914 |
-
if siliconflow_data["guidance_scale"] > 100:
|
915 |
-
siliconflow_data["guidance_scale"] = 100
|
916 |
-
|
917 |
-
if "image_size" in siliconflow_data and siliconflow_data["image_size"] not in ["1024x1024", "512x1024", "768x512", "768x1024", "1024x576", "576x1024","960x1280", "720x1440", "720x1280"]:
|
918 |
-
siliconflow_data["image_size"] = "1024x1024"
|
919 |
-
|
920 |
-
try:
|
921 |
-
start_time = time.time()
|
922 |
-
response = requests.post(
|
923 |
-
"https://api.siliconflow.cn/v1/images/generations",
|
924 |
-
headers=headers,
|
925 |
-
json=siliconflow_data,
|
926 |
-
timeout=120
|
927 |
-
)
|
928 |
-
|
929 |
-
if response.status_code == 429:
|
930 |
-
return jsonify(response.json()), 429
|
931 |
-
|
932 |
-
response.raise_for_status()
|
933 |
-
end_time = time.time()
|
934 |
-
response_json = response.json()
|
935 |
-
total_time = end_time - start_time
|
936 |
-
|
937 |
-
try:
|
938 |
-
images = response_json.get("images", [])
|
939 |
-
openai_images = []
|
940 |
-
for item in images:
|
941 |
-
if isinstance(item, dict) and "url" in item:
|
942 |
-
image_url = item["url"]
|
943 |
-
print(f"image_url: {image_url}")
|
944 |
-
if data.get("response_format") == "b64_json":
|
945 |
-
try:
|
946 |
-
image_data = requests.get(image_url, stream=True).raw
|
947 |
-
image = Image.open(image_data)
|
948 |
-
buffered = io.BytesIO()
|
949 |
-
image.save(buffered, format="PNG")
|
950 |
-
img_str = base64.b64encode(buffered.getvalue()).decode()
|
951 |
-
openai_images.append({"b64_json": img_str})
|
952 |
-
except Exception as e:
|
953 |
-
logging.error(f"图片转base64失败: {e}")
|
954 |
-
openai_images.append({"url": image_url})
|
955 |
-
else:
|
956 |
-
openai_images.append({"url": image_url})
|
957 |
-
else:
|
958 |
-
logging.error(f"无效的图片数据: {item}")
|
959 |
-
openai_images.append({"url": item})
|
960 |
-
|
961 |
-
|
962 |
-
response_data = {
|
963 |
-
"created": int(time.time()),
|
964 |
-
"data": openai_images
|
965 |
-
}
|
966 |
-
except (KeyError, ValueError, IndexError) as e:
|
967 |
-
logging.error(
|
968 |
-
f"解析响应 JSON 失败: {e}, "
|
969 |
-
f"完整内容: {response_json}"
|
970 |
-
)
|
971 |
-
response_data = {
|
972 |
-
"created": int(time.time()),
|
973 |
-
"data": []
|
974 |
-
}
|
975 |
-
|
976 |
-
logging.info(
|
977 |
-
f"使用的key: {api_key}, "
|
978 |
-
f"总共用时: {total_time:.4f}秒, "
|
979 |
-
f"使用的模型: {model_name}"
|
980 |
-
)
|
981 |
-
|
982 |
-
with data_lock:
|
983 |
-
request_timestamps.append(time.time())
|
984 |
-
token_counts.append(0)
|
985 |
-
|
986 |
-
return jsonify(response_data)
|
987 |
-
|
988 |
-
except requests.exceptions.RequestException as e:
|
989 |
-
logging.error(f"请求转发异常: {e}")
|
990 |
-
return jsonify({"error": str(e)}), 500
|
991 |
-
else:
|
992 |
-
return jsonify({"error": "Unsupported model"}), 400
|
993 |
-
|
994 |
-
@app.route('/handsome/v1/chat/completions', methods=['POST'])
|
995 |
-
def handsome_chat_completions():
|
996 |
-
if not check_authorization(request):
|
997 |
-
return jsonify({"error": "Unauthorized"}), 401
|
998 |
-
|
999 |
-
data = request.get_json()
|
1000 |
-
if not data or 'model' not in data:
|
1001 |
-
return jsonify({"error": "Invalid request data"}), 400
|
1002 |
-
|
1003 |
-
model_name = data['model']
|
1004 |
-
|
1005 |
-
request_type = determine_request_type(
|
1006 |
-
model_name,
|
1007 |
-
text_models + image_models,
|
1008 |
-
free_text_models + free_image_models
|
1009 |
-
)
|
1010 |
-
|
1011 |
-
api_key = select_key(request_type, model_name)
|
1012 |
-
|
1013 |
-
if not api_key:
|
1014 |
-
return jsonify(
|
1015 |
-
{
|
1016 |
-
"error": (
|
1017 |
-
"No available API key for this "
|
1018 |
-
"request type or all keys have "
|
1019 |
-
"reached their limits"
|
1020 |
-
)
|
1021 |
-
}
|
1022 |
-
), 429
|
1023 |
-
|
1024 |
-
headers = {
|
1025 |
-
"Authorization": f"Bearer {api_key}",
|
1026 |
-
"Content-Type": "application/json"
|
1027 |
-
}
|
1028 |
-
|
1029 |
-
if model_name in image_models:
|
1030 |
-
user_content = ""
|
1031 |
-
messages = data.get("messages", [])
|
1032 |
-
for message in messages:
|
1033 |
-
if message["role"] == "user":
|
1034 |
-
if isinstance(message["content"], str):
|
1035 |
-
user_content += message["content"] + " "
|
1036 |
-
elif isinstance(message["content"], list):
|
1037 |
-
for item in message["content"]:
|
1038 |
-
if (
|
1039 |
-
isinstance(item, dict) and
|
1040 |
-
item.get("type") == "text"
|
1041 |
-
):
|
1042 |
-
user_content += (
|
1043 |
-
item.get("text", "") +
|
1044 |
-
" "
|
1045 |
-
)
|
1046 |
-
user_content = user_content.strip()
|
1047 |
-
|
1048 |
-
siliconflow_data = {
|
1049 |
-
"model": model_name,
|
1050 |
-
"prompt": user_content,
|
1051 |
-
|
1052 |
-
}
|
1053 |
-
if model_name == "black-forest-labs/FLUX.1-pro":
|
1054 |
-
siliconflow_data["width"] = data.get("width", 1024)
|
1055 |
-
siliconflow_data["height"] = data.get("height", 768)
|
1056 |
-
siliconflow_data["prompt_upsampling"] = data.get("prompt_upsampling", False)
|
1057 |
-
siliconflow_data["image_prompt"] = data.get("image_prompt")
|
1058 |
-
siliconflow_data["steps"] = data.get("steps", 20)
|
1059 |
-
siliconflow_data["guidance"] = data.get("guidance", 3)
|
1060 |
-
siliconflow_data["safety_tolerance"] = data.get("safety_tolerance", 2)
|
1061 |
-
siliconflow_data["interval"] = data.get("interval", 2)
|
1062 |
-
siliconflow_data["output_format"] = data.get("output_format", "png")
|
1063 |
-
seed = data.get("seed")
|
1064 |
-
if isinstance(seed, int) and 0 < seed < 9999999999:
|
1065 |
-
siliconflow_data["seed"] = seed
|
1066 |
-
if siliconflow_data["width"] < 256 or siliconflow_data["width"] > 1440 or siliconflow_data["width"] % 32 != 0:
|
1067 |
-
siliconflow_data["width"] = 1024
|
1068 |
-
if siliconflow_data["height"] < 256 or siliconflow_data["height"] > 1440 or siliconflow_data["height"] % 32 != 0:
|
1069 |
-
siliconflow_data["height"] = 768
|
1070 |
-
|
1071 |
-
if siliconflow_data["steps"] < 1 or siliconflow_data["steps"] > 50:
|
1072 |
-
siliconflow_data["steps"] = 20
|
1073 |
-
if siliconflow_data["guidance"] < 1.5 or siliconflow_data["guidance"] > 5:
|
1074 |
-
siliconflow_data["guidance"] = 3
|
1075 |
-
if siliconflow_data["safety_tolerance"] < 0 or siliconflow_data["safety_tolerance"] > 6:
|
1076 |
-
siliconflow_data["safety_tolerance"] = 2
|
1077 |
-
if siliconflow_data["interval"] < 1 or siliconflow_data["interval"] > 4 :
|
1078 |
-
siliconflow_data["interval"] = 2
|
1079 |
-
else:
|
1080 |
-
siliconflow_data["image_size"] = "1024x1024"
|
1081 |
-
siliconflow_data["batch_size"] = 1
|
1082 |
-
siliconflow_data["num_inference_steps"] = 20
|
1083 |
-
siliconflow_data["guidance_scale"] = 7.5
|
1084 |
-
siliconflow_data["prompt_enhancement"] = False
|
1085 |
-
|
1086 |
-
if data.get("size"):
|
1087 |
-
siliconflow_data["image_size"] = data.get("size")
|
1088 |
-
if data.get("n"):
|
1089 |
-
siliconflow_data["batch_size"] = data.get("n")
|
1090 |
-
if data.get("steps"):
|
1091 |
-
siliconflow_data["num_inference_steps"] = data.get("steps")
|
1092 |
-
if data.get("guidance_scale"):
|
1093 |
-
siliconflow_data["guidance_scale"] = data.get("guidance_scale")
|
1094 |
-
if data.get("negative_prompt"):
|
1095 |
-
siliconflow_data["negative_prompt"] = data.get("negative_prompt")
|
1096 |
-
if data.get("seed"):
|
1097 |
-
siliconflow_data["seed"] = data.get("seed")
|
1098 |
-
if data.get("prompt_enhancement"):
|
1099 |
-
siliconflow_data["prompt_enhancement"] = data.get("prompt_enhancement")
|
1100 |
-
|
1101 |
-
if siliconflow_data["batch_size"] < 1:
|
1102 |
-
siliconflow_data["batch_size"] = 1
|
1103 |
-
if siliconflow_data["batch_size"] > 4:
|
1104 |
-
siliconflow_data["batch_size"] = 4
|
1105 |
-
|
1106 |
-
if siliconflow_data["num_inference_steps"] < 1:
|
1107 |
-
siliconflow_data["num_inference_steps"] = 1
|
1108 |
-
if siliconflow_data["num_inference_steps"] > 50:
|
1109 |
-
siliconflow_data["num_inference_steps"] = 50
|
1110 |
-
|
1111 |
-
if siliconflow_data["guidance_scale"] < 0:
|
1112 |
-
siliconflow_data["guidance_scale"] = 0
|
1113 |
-
if siliconflow_data["guidance_scale"] > 100:
|
1114 |
-
siliconflow_data["guidance_scale"] = 100
|
1115 |
-
|
1116 |
-
if siliconflow_data["image_size"] not in ["1024x1024", "512x1024", "768x512", "768x1024", "1024x576", "576x1024", "960x1280", "720x1440", "720x1280"]:
|
1117 |
-
siliconflow_data["image_size"] = "1024x1024"
|
1118 |
-
|
1119 |
-
try:
|
1120 |
-
start_time = time.time()
|
1121 |
-
response = requests.post(
|
1122 |
-
"https://api.siliconflow.cn/v1/images/generations",
|
1123 |
-
headers=headers,
|
1124 |
-
json=siliconflow_data,
|
1125 |
-
timeout=120,
|
1126 |
-
stream=data.get("stream", False)
|
1127 |
-
)
|
1128 |
-
|
1129 |
-
if response.status_code == 429:
|
1130 |
-
return jsonify(response.json()), 429
|
1131 |
-
|
1132 |
-
if data.get("stream", False):
|
1133 |
-
def generate():
|
1134 |
-
first_chunk_time = None
|
1135 |
-
full_response_content = ""
|
1136 |
-
try:
|
1137 |
-
response.raise_for_status()
|
1138 |
-
end_time = time.time()
|
1139 |
-
response_json = response.json()
|
1140 |
-
total_time = end_time - start_time
|
1141 |
-
|
1142 |
-
images = response_json.get("images", [])
|
1143 |
-
|
1144 |
-
image_url = ""
|
1145 |
-
if images and isinstance(images[0], dict) and "url" in images[0]:
|
1146 |
-
image_url = images[0]["url"]
|
1147 |
-
logging.info(f"Extracted image URL: {image_url}")
|
1148 |
-
elif images and isinstance(images[0], str):
|
1149 |
-
image_url = images[0]
|
1150 |
-
logging.info(f"Extracted image URL: {image_url}")
|
1151 |
-
|
1152 |
-
markdown_image_link = f""
|
1153 |
-
if image_url:
|
1154 |
-
chunk_data = {
|
1155 |
-
"id": f"chatcmpl-{uuid.uuid4()}",
|
1156 |
-
"object": "chat.completion.chunk",
|
1157 |
-
"created": int(time.time()),
|
1158 |
-
"model": model_name,
|
1159 |
-
"choices": [
|
1160 |
-
{
|
1161 |
-
"index": 0,
|
1162 |
-
"delta": {
|
1163 |
-
"role": "assistant",
|
1164 |
-
"content": markdown_image_link
|
1165 |
-
},
|
1166 |
-
"finish_reason": None
|
1167 |
-
}
|
1168 |
-
]
|
1169 |
-
}
|
1170 |
-
yield f"data: {json.dumps(chunk_data)}\n\n".encode('utf-8')
|
1171 |
-
full_response_content = markdown_image_link
|
1172 |
-
else:
|
1173 |
-
chunk_data = {
|
1174 |
-
"id": f"chatcmpl-{uuid.uuid4()}",
|
1175 |
-
"object": "chat.completion.chunk",
|
1176 |
-
"created": int(time.time()),
|
1177 |
-
"model": model_name,
|
1178 |
-
"choices": [
|
1179 |
-
{
|
1180 |
-
"index": 0,
|
1181 |
-
"delta": {
|
1182 |
-
"role": "assistant",
|
1183 |
-
"content": "Failed to generate image"
|
1184 |
-
},
|
1185 |
-
"finish_reason": None
|
1186 |
-
}
|
1187 |
-
]
|
1188 |
-
}
|
1189 |
-
yield f"data: {json.dumps(chunk_data)}\n\n".encode('utf-8')
|
1190 |
-
full_response_content = "Failed to generate image"
|
1191 |
-
|
1192 |
-
end_chunk_data = {
|
1193 |
-
"id": f"chatcmpl-{uuid.uuid4()}",
|
1194 |
-
"object": "chat.completion.chunk",
|
1195 |
-
"created": int(time.time()),
|
1196 |
-
"model": model_name,
|
1197 |
-
"choices": [
|
1198 |
-
{
|
1199 |
-
"index": 0,
|
1200 |
-
"delta": {},
|
1201 |
-
"finish_reason": "stop"
|
1202 |
-
}
|
1203 |
-
]
|
1204 |
-
}
|
1205 |
-
yield f"data: {json.dumps(end_chunk_data)}\n\n".encode('utf-8')
|
1206 |
-
with data_lock:
|
1207 |
-
request_timestamps.append(time.time())
|
1208 |
-
token_counts.append(0)
|
1209 |
-
except requests.exceptions.RequestException as e:
|
1210 |
-
logging.error(f"请求转发异常: {e}")
|
1211 |
-
error_chunk_data = {
|
1212 |
-
"id": f"chatcmpl-{uuid.uuid4()}",
|
1213 |
-
"object": "chat.completion.chunk",
|
1214 |
-
"created": int(time.time()),
|
1215 |
-
"model": model_name,
|
1216 |
-
"choices": [
|
1217 |
-
{
|
1218 |
-
"index": 0,
|
1219 |
-
"delta": {
|
1220 |
-
"role": "assistant",
|
1221 |
-
"content": f"Error: {str(e)}"
|
1222 |
-
},
|
1223 |
-
"finish_reason": None
|
1224 |
-
}
|
1225 |
-
]
|
1226 |
-
}
|
1227 |
-
yield f"data: {json.dumps(error_chunk_data)}\n\n".encode('utf-8')
|
1228 |
-
end_chunk_data = {
|
1229 |
-
"id": f"chatcmpl-{uuid.uuid4()}",
|
1230 |
-
"object": "chat.completion.chunk",
|
1231 |
-
"created": int(time.time()),
|
1232 |
-
"model": model_name,
|
1233 |
-
"choices": [
|
1234 |
-
{
|
1235 |
-
"index": 0,
|
1236 |
-
"delta": {},
|
1237 |
-
"finish_reason": "stop"
|
1238 |
-
}
|
1239 |
-
]
|
1240 |
-
}
|
1241 |
-
yield f"data: {json.dumps(end_chunk_data)}\n\n".encode('utf-8')
|
1242 |
-
logging.info(
|
1243 |
-
f"使用的key: {api_key}, "
|
1244 |
-
f"使用的模型: {model_name}"
|
1245 |
-
)
|
1246 |
-
yield "data: [DONE]\n\n".encode('utf-8')
|
1247 |
-
return Response(stream_with_context(generate()), content_type='text/event-stream')
|
1248 |
|
1249 |
-
else:
|
1250 |
-
response.raise_for_status()
|
1251 |
end_time = time.time()
|
1252 |
-
|
1253 |
-
|
1254 |
-
|
1255 |
-
try:
|
1256 |
-
images = response_json.get("images", [])
|
1257 |
-
|
1258 |
-
image_url = ""
|
1259 |
-
if images and isinstance(images[0], dict) and "url" in images[0]:
|
1260 |
-
image_url = images[0]["url"]
|
1261 |
-
logging.info(f"Extracted image URL: {image_url}")
|
1262 |
-
elif images and isinstance(images[0], str):
|
1263 |
-
image_url = images[0]
|
1264 |
-
logging.info(f"Extracted image URL: {image_url}")
|
1265 |
-
|
1266 |
-
markdown_image_link = f""
|
1267 |
-
response_data = {
|
1268 |
-
"id": f"chatcmpl-{uuid.uuid4()}",
|
1269 |
-
"object": "chat.completion",
|
1270 |
-
"created": int(time.time()),
|
1271 |
-
"model": model_name,
|
1272 |
-
"choices": [
|
1273 |
-
{
|
1274 |
-
"index": 0,
|
1275 |
-
"message": {
|
1276 |
-
"role": "assistant",
|
1277 |
-
"content": markdown_image_link if image_url else "Failed to generate image",
|
1278 |
-
},
|
1279 |
-
"finish_reason": "stop",
|
1280 |
-
}
|
1281 |
-
],
|
1282 |
-
}
|
1283 |
-
except (KeyError, ValueError, IndexError) as e:
|
1284 |
-
logging.error(
|
1285 |
-
f"解析响应 JSON 失败: {e}, "
|
1286 |
-
f"完整内容: {response_json}"
|
1287 |
-
)
|
1288 |
-
response_data = {
|
1289 |
-
"id": f"chatcmpl-{uuid.uuid4()}",
|
1290 |
-
"object": "chat.completion",
|
1291 |
-
"created": int(time.time()),
|
1292 |
-
"model": model_name,
|
1293 |
-
"choices": [
|
1294 |
-
{
|
1295 |
-
"index": 0,
|
1296 |
-
"message": {
|
1297 |
-
"role": "assistant",
|
1298 |
-
"content": "Failed to process image data",
|
1299 |
-
},
|
1300 |
-
"finish_reason": "stop",
|
1301 |
-
}
|
1302 |
-
],
|
1303 |
-
}
|
1304 |
-
|
1305 |
-
logging.info(
|
1306 |
-
f"使用的key: {api_key}, "
|
1307 |
-
f"总共用时: {total_time:.4f}秒, "
|
1308 |
-
f"使用的模型: {model_name}"
|
1309 |
-
)
|
1310 |
-
with data_lock:
|
1311 |
-
request_timestamps.append(time.time())
|
1312 |
-
token_counts.append(0)
|
1313 |
-
return jsonify(response_data)
|
1314 |
-
|
1315 |
-
except requests.exceptions.RequestException as e:
|
1316 |
-
logging.error(f"请求转发异常: {e}")
|
1317 |
-
return jsonify({"error": str(e)}), 500
|
1318 |
-
else:
|
1319 |
-
try:
|
1320 |
-
start_time = time.time()
|
1321 |
-
response = requests.post(
|
1322 |
-
TEST_MODEL_ENDPOINT,
|
1323 |
-
headers=headers,
|
1324 |
-
json=data,
|
1325 |
-
stream=data.get("stream", False),
|
1326 |
-
timeout=60
|
1327 |
-
)
|
1328 |
-
|
1329 |
-
if response.status_code == 429:
|
1330 |
-
return jsonify(response.json()), 429
|
1331 |
-
|
1332 |
-
if data.get("stream", False):
|
1333 |
-
def generate():
|
1334 |
-
first_chunk_time = None
|
1335 |
-
full_response_content = ""
|
1336 |
-
for chunk in response.iter_content(chunk_size=1024):
|
1337 |
-
if chunk:
|
1338 |
-
if first_chunk_time is None:
|
1339 |
-
first_chunk_time = time.time()
|
1340 |
-
full_response_content += chunk.decode("utf-8")
|
1341 |
-
yield chunk
|
1342 |
-
|
1343 |
-
end_time = time.time()
|
1344 |
-
first_token_time = (
|
1345 |
-
first_chunk_time - start_time
|
1346 |
-
if first_chunk_time else 0
|
1347 |
-
)
|
1348 |
-
total_time = end_time - start_time
|
1349 |
-
|
1350 |
-
prompt_tokens = 0
|
1351 |
-
completion_tokens = 0
|
1352 |
-
response_content = ""
|
1353 |
-
for line in full_response_content.splitlines():
|
1354 |
-
if line.startswith("data:"):
|
1355 |
-
line = line[5:].strip()
|
1356 |
-
if line == "[DONE]":
|
1357 |
-
continue
|
1358 |
-
try:
|
1359 |
-
response_json = json.loads(line)
|
1360 |
-
|
1361 |
-
if (
|
1362 |
-
"usage" in response_json and
|
1363 |
-
"completion_tokens" in response_json["usage"]
|
1364 |
-
):
|
1365 |
-
completion_tokens = response_json[
|
1366 |
-
"usage"
|
1367 |
-
]["completion_tokens"]
|
1368 |
-
|
1369 |
-
if (
|
1370 |
-
"choices" in response_json and
|
1371 |
-
len(response_json["choices"]) > 0 and
|
1372 |
-
"delta" in response_json["choices"][0] and
|
1373 |
-
"content" in response_json[
|
1374 |
-
"choices"
|
1375 |
-
][0]["delta"]
|
1376 |
-
):
|
1377 |
-
response_content += response_json[
|
1378 |
-
"choices"
|
1379 |
-
][0]["delta"]["content"]
|
1380 |
-
|
1381 |
-
if (
|
1382 |
-
"usage" in response_json and
|
1383 |
-
"prompt_tokens" in response_json["usage"]
|
1384 |
-
):
|
1385 |
-
prompt_tokens = response_json[
|
1386 |
-
"usage"
|
1387 |
-
]["prompt_tokens"]
|
1388 |
-
|
1389 |
-
except (
|
1390 |
-
KeyError,
|
1391 |
-
ValueError,
|
1392 |
-
IndexError
|
1393 |
-
) as e:
|
1394 |
-
logging.error(
|
1395 |
-
f"解析流式响应单行 JSON 失败: {e}, "
|
1396 |
-
f"行内容: {line}"
|
1397 |
-
)
|
1398 |
-
|
1399 |
-
user_content = ""
|
1400 |
-
messages = data.get("messages", [])
|
1401 |
-
for message in messages:
|
1402 |
-
if message["role"] == "user":
|
1403 |
-
if isinstance(message["content"], str):
|
1404 |
-
user_content += message["content"] + " "
|
1405 |
-
elif isinstance(message["content"], list):
|
1406 |
-
for item in message["content"]:
|
1407 |
-
if (
|
1408 |
-
isinstance(item, dict) and
|
1409 |
-
item.get("type") == "text"
|
1410 |
-
):
|
1411 |
-
user_content += (
|
1412 |
-
item.get("text", "") +
|
1413 |
-
" "
|
1414 |
-
)
|
1415 |
-
|
1416 |
-
user_content = user_content.strip()
|
1417 |
-
|
1418 |
-
user_content_replaced = user_content.replace(
|
1419 |
-
'\n', '\\n'
|
1420 |
-
).replace('\r', '\\n')
|
1421 |
-
response_content_replaced = response_content.replace(
|
1422 |
-
'\n', '\\n'
|
1423 |
-
).replace('\r', '\\n')
|
1424 |
-
|
1425 |
-
logging.info(
|
1426 |
-
f"使用的key: {api_key}, "
|
1427 |
-
f"提示token: {prompt_tokens}, "
|
1428 |
-
f"输出token: {completion_tokens}, "
|
1429 |
-
f"首字用时: {first_token_time:.4f}秒, "
|
1430 |
-
f"总共用时: {total_time:.4f}秒, "
|
1431 |
-
f"使用的模型: {model_name}, "
|
1432 |
-
f"用户的内容: {user_content_replaced}, "
|
1433 |
-
f"输出的内容: {response_content_replaced}"
|
1434 |
-
)
|
1435 |
-
|
1436 |
-
with data_lock:
|
1437 |
-
request_timestamps.append(time.time())
|
1438 |
-
token_counts.append(prompt_tokens+completion_tokens)
|
1439 |
-
|
1440 |
-
return Response(
|
1441 |
-
stream_with_context(generate()),
|
1442 |
-
content_type=response.headers['Content-Type']
|
1443 |
)
|
1444 |
-
else:
|
1445 |
-
response.raise_for_status()
|
1446 |
-
end_time = time.time()
|
1447 |
-
response_json = response.json()
|
1448 |
total_time = end_time - start_time
|
1449 |
|
1450 |
-
|
1451 |
-
|
1452 |
-
|
1453 |
-
|
1454 |
-
|
1455 |
-
|
1456 |
-
"
|
1457 |
-
|
1458 |
-
|
1459 |
-
|
1460 |
-
|
1461 |
-
|
1462 |
-
|
1463 |
-
|
1464 |
-
|
1465 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1466 |
|
1467 |
user_content = ""
|
1468 |
messages = data.get("messages", [])
|
@@ -1477,7 +855,8 @@ def handsome_chat_completions():
|
|
1477 |
item.get("type") == "text"
|
1478 |
):
|
1479 |
user_content += (
|
1480 |
-
item.get("text", "") +
|
|
|
1481 |
)
|
1482 |
|
1483 |
user_content = user_content.strip()
|
@@ -1493,24 +872,91 @@ def handsome_chat_completions():
|
|
1493 |
f"使用的key: {api_key}, "
|
1494 |
f"提示token: {prompt_tokens}, "
|
1495 |
f"输出token: {completion_tokens}, "
|
1496 |
-
f"首字用时:
|
1497 |
f"总共用时: {total_time:.4f}秒, "
|
1498 |
f"使用的模型: {model_name}, "
|
1499 |
f"用户的内容: {user_content_replaced}, "
|
1500 |
f"输出的内容: {response_content_replaced}"
|
1501 |
)
|
|
|
1502 |
with data_lock:
|
1503 |
request_timestamps.append(time.time())
|
1504 |
-
|
1505 |
-
|
1506 |
-
|
1507 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1508 |
|
1509 |
-
|
1510 |
|
1511 |
-
|
1512 |
-
|
1513 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1514 |
|
1515 |
if __name__ == '__main__':
|
1516 |
import json
|
|
|
23 |
API_ENDPOINT = "https://api.deepseek.com/user/balance"
|
24 |
TEST_MODEL_ENDPOINT = "https://api.deepseek.com/v1/chat/completions"
|
25 |
MODELS_ENDPOINT = "https://api.deepseek.com/v1/models"
|
|
|
26 |
|
27 |
app = Flask(__name__)
|
28 |
|
29 |
text_models = []
|
30 |
free_text_models = []
|
|
|
|
|
|
|
|
|
31 |
|
32 |
invalid_keys_global = []
|
33 |
free_keys_global = []
|
|
|
73 |
exchange_rate = get_usd_to_cny_rate()
|
74 |
if exchange_rate is not None:
|
75 |
total_balance_cny += usd_balance * exchange_rate
|
76 |
+
logging.info(f"获取美元兑人民币汇率成功{total_balance_cny}")
|
77 |
else:
|
78 |
logging.warning(f"获取美元兑人民币汇率失败,无法转换美元余额,API Key:{api_key}")
|
79 |
total_balance_cny += usd_balance * 7.2
|
|
|
727 |
"business_address": None
|
728 |
})
|
729 |
|
730 |
+
@app.route('/handsome/v1/chat/completions', methods=['POST'])
|
731 |
+
def handsome_chat_completions():
|
732 |
if not check_authorization(request):
|
733 |
return jsonify({"error": "Unauthorized"}), 401
|
734 |
|
|
|
737 |
return jsonify({"error": "Invalid request data"}), 400
|
738 |
|
739 |
model_name = data['model']
|
740 |
+
|
741 |
request_type = determine_request_type(
|
742 |
model_name,
|
743 |
+
text_models + image_models,
|
744 |
+
free_text_models + free_image_models
|
745 |
)
|
746 |
+
|
747 |
api_key = select_key(request_type, model_name)
|
748 |
|
749 |
if not api_key:
|
|
|
761 |
"Authorization": f"Bearer {api_key}",
|
762 |
"Content-Type": "application/json"
|
763 |
}
|
764 |
+
|
765 |
try:
|
766 |
start_time = time.time()
|
767 |
response = requests.post(
|
768 |
+
TEST_MODEL_ENDPOINT,
|
769 |
headers=headers,
|
770 |
json=data,
|
771 |
+
stream=data.get("stream", False),
|
772 |
+
timeout=60
|
773 |
)
|
774 |
|
775 |
if response.status_code == 429:
|
776 |
return jsonify(response.json()), 429
|
777 |
|
778 |
+
if data.get("stream", False):
|
779 |
+
def generate():
|
780 |
+
first_chunk_time = None
|
781 |
+
full_response_content = ""
|
782 |
+
for chunk in response.iter_content(chunk_size=1024):
|
783 |
+
if chunk:
|
784 |
+
if first_chunk_time is None:
|
785 |
+
first_chunk_time = time.time()
|
786 |
+
full_response_content += chunk.decode("utf-8")
|
787 |
+
yield chunk
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
788 |
|
|
|
|
|
789 |
end_time = time.time()
|
790 |
+
first_token_time = (
|
791 |
+
first_chunk_time - start_time
|
792 |
+
if first_chunk_time else 0
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
793 |
)
|
|
|
|
|
|
|
|
|
794 |
total_time = end_time - start_time
|
795 |
|
796 |
+
prompt_tokens = 0
|
797 |
+
completion_tokens = 0
|
798 |
+
response_content = ""
|
799 |
+
for line in full_response_content.splitlines():
|
800 |
+
if line.startswith("data:"):
|
801 |
+
line = line[5:].strip()
|
802 |
+
if line == "[DONE]":
|
803 |
+
continue
|
804 |
+
try:
|
805 |
+
response_json = json.loads(line)
|
806 |
+
|
807 |
+
if (
|
808 |
+
"usage" in response_json and
|
809 |
+
"completion_tokens" in response_json["usage"]
|
810 |
+
):
|
811 |
+
completion_tokens = response_json[
|
812 |
+
"usage"
|
813 |
+
]["completion_tokens"]
|
814 |
+
|
815 |
+
if (
|
816 |
+
"choices" in response_json and
|
817 |
+
len(response_json["choices"]) > 0 and
|
818 |
+
"delta" in response_json["choices"][0] and
|
819 |
+
"content" in response_json[
|
820 |
+
"choices"
|
821 |
+
][0]["delta"]
|
822 |
+
):
|
823 |
+
response_content += response_json[
|
824 |
+
"choices"
|
825 |
+
][0]["delta"]["content"]
|
826 |
+
|
827 |
+
if (
|
828 |
+
"usage" in response_json and
|
829 |
+
"prompt_tokens" in response_json["usage"]
|
830 |
+
):
|
831 |
+
prompt_tokens = response_json[
|
832 |
+
"usage"
|
833 |
+
]["prompt_tokens"]
|
834 |
+
|
835 |
+
except (
|
836 |
+
KeyError,
|
837 |
+
ValueError,
|
838 |
+
IndexError
|
839 |
+
) as e:
|
840 |
+
logging.error(
|
841 |
+
f"解析流式响应单行 JSON 失败: {e}, "
|
842 |
+
f"行内容: {line}"
|
843 |
+
)
|
844 |
|
845 |
user_content = ""
|
846 |
messages = data.get("messages", [])
|
|
|
855 |
item.get("type") == "text"
|
856 |
):
|
857 |
user_content += (
|
858 |
+
item.get("text", "") +
|
859 |
+
" "
|
860 |
)
|
861 |
|
862 |
user_content = user_content.strip()
|
|
|
872 |
f"使用的key: {api_key}, "
|
873 |
f"提示token: {prompt_tokens}, "
|
874 |
f"输出token: {completion_tokens}, "
|
875 |
+
f"首字用时: {first_token_time:.4f}秒, "
|
876 |
f"总共用时: {total_time:.4f}秒, "
|
877 |
f"使用的模型: {model_name}, "
|
878 |
f"用户的内容: {user_content_replaced}, "
|
879 |
f"输出的内容: {response_content_replaced}"
|
880 |
)
|
881 |
+
|
882 |
with data_lock:
|
883 |
request_timestamps.append(time.time())
|
884 |
+
token_counts.append(prompt_tokens+completion_tokens)
|
885 |
+
|
886 |
+
return Response(
|
887 |
+
stream_with_context(generate()),
|
888 |
+
content_type=response.headers['Content-Type']
|
889 |
+
)
|
890 |
+
else:
|
891 |
+
response.raise_for_status()
|
892 |
+
end_time = time.time()
|
893 |
+
response_json = response.json()
|
894 |
+
total_time = end_time - start_time
|
895 |
+
|
896 |
+
try:
|
897 |
+
prompt_tokens = response_json["usage"]["prompt_tokens"]
|
898 |
+
completion_tokens = response_json[
|
899 |
+
"usage"
|
900 |
+
]["completion_tokens"]
|
901 |
+
response_content = response_json[
|
902 |
+
"choices"
|
903 |
+
][0]["message"]["content"]
|
904 |
+
except (KeyError, ValueError, IndexError) as e:
|
905 |
+
logging.error(
|
906 |
+
f"解析非流式响应 JSON 失败: {e}, "
|
907 |
+
f"完整内容: {response_json}"
|
908 |
+
)
|
909 |
+
prompt_tokens = 0
|
910 |
+
completion_tokens = 0
|
911 |
+
response_content = ""
|
912 |
+
|
913 |
+
user_content = ""
|
914 |
+
messages = data.get("messages", [])
|
915 |
+
for message in messages:
|
916 |
+
if message["role"] == "user":
|
917 |
+
if isinstance(message["content"], str):
|
918 |
+
user_content += message["content"] + " "
|
919 |
+
elif isinstance(message["content"], list):
|
920 |
+
for item in message["content"]:
|
921 |
+
if (
|
922 |
+
isinstance(item, dict) and
|
923 |
+
item.get("type") == "text"
|
924 |
+
):
|
925 |
+
user_content += (
|
926 |
+
item.get("text", "") + " "
|
927 |
+
)
|
928 |
|
929 |
+
user_content = user_content.strip()
|
930 |
|
931 |
+
user_content_replaced = user_content.replace(
|
932 |
+
'\n', '\\n'
|
933 |
+
).replace('\r', '\\n')
|
934 |
+
response_content_replaced = response_content.replace(
|
935 |
+
'\n', '\\n'
|
936 |
+
).replace('\r', '\\n')
|
937 |
+
|
938 |
+
logging.info(
|
939 |
+
f"使用的key: {api_key}, "
|
940 |
+
f"提示token: {prompt_tokens}, "
|
941 |
+
f"输出token: {completion_tokens}, "
|
942 |
+
f"首字用时: 0, "
|
943 |
+
f"总共用时: {total_time:.4f}秒, "
|
944 |
+
f"使用的模型: {model_name}, "
|
945 |
+
f"用户的内容: {user_content_replaced}, "
|
946 |
+
f"输出的内容: {response_content_replaced}"
|
947 |
+
)
|
948 |
+
with data_lock:
|
949 |
+
request_timestamps.append(time.time())
|
950 |
+
if "prompt_tokens" in response_json["usage"] and "completion_tokens" in response_json["usage"]:
|
951 |
+
token_counts.append(response_json["usage"]["prompt_tokens"] + response_json["usage"]["completion_tokens"])
|
952 |
+
else:
|
953 |
+
token_counts.append(0)
|
954 |
+
|
955 |
+
return jsonify(response_json)
|
956 |
+
|
957 |
+
except requests.exceptions.RequestException as e:
|
958 |
+
logging.error(f"请求转发异常: {e}")
|
959 |
+
return jsonify({"error": str(e)}), 500
|
960 |
|
961 |
if __name__ == '__main__':
|
962 |
import json
|