import gradio as gr from langchain import PromptTemplate # from langchain.chat_models import ChatOpenAI from langchain_community.chat_models import ChatOpenAI from langchain.chains import LLMChain from langchain_community.retrievers import WikipediaRetriever from transformers import AutoModelForSequenceClassification, AutoTokenizer from langchain_google_genai import ChatGoogleGenerativeAI import os def song_insight(song, artist): # input query_input = f"{song.title()} by {artist.title()}" # get info about the song from wikipedia using wikipedia retriever retriever = WikipediaRetriever() docs = retriever.get_relevant_documents(query=query_input) # LLM model # llm = ChatOpenAI(openai_api_key=os.environ['OPENAI_API_KEY'], model_name="gpt-3.5-turbo", temperature=0) llm = ChatGoogleGenerativeAI(model="gemini-pro", google_api_key=os.environ['GOOGLE_API_KEY']) # Emotion Classifier Model tokenizer = AutoTokenizer.from_pretrained("yangswei/emotion_text_classification") emotion_model = AutoModelForSequenceClassification.from_pretrained("yangswei/emotion_text_classification") # get the song meaning template_song_meaning = """ {artist} has released a song called {song}. {content} based on the the content above what does the song {song} by {artist} tell us about? give me a long explanations """ prompt_template_song_meaning = PromptTemplate(input_variables=["artist", "song", "content"], template=template_song_meaning) chain_song_meaning = LLMChain(llm=llm, prompt=prompt_template_song_meaning) results_song_meaning = chain_song_meaning.run(artist=artist.title(), song=song.title(), content=docs[0].page_content) # get the song theme template_song_theme = """ {artist} has released a song called {song}. {content} based on the the content above what themes does the lyrics have? """ prompt_template_song_theme = PromptTemplate(input_variables=["artist", "song", "content"], template=template_song_theme) chain_song_theme = LLMChain(llm=llm, prompt=prompt_template_song_theme) text_song_theme = chain_song_theme.run(artist=artist.title(), song=song.title(), content=docs[0].page_content) inputs_song_theme = tokenizer(text_song_theme, return_tensors="pt") output_song_theme_proba = emotion_model(**inputs_song_theme).logits.softmax(1) labels = emotion_model.config.id2label confidences = {labels[i]: output_song_theme_proba[0][i].item() for i in range(len(labels))} return results_song_meaning, confidences with gr.Blocks(theme=gr.themes.Soft()) as demo: song = gr.Textbox(label="Song") artist = gr.Textbox(label="Artist") output_song_meaning = gr.Textbox(label="Meaning") output_song_theme = gr.Label(num_top_classes=6, label="Theme") gr.Interface(fn=song_insight, inputs=[song, artist], outputs=[output_song_meaning, output_song_theme]) example = gr.Examples([['Life Goes On', 'BTS'], ['Here Comes The Sun', 'The Beatles'], ['Bedtime Stories', 'Jay Chou'], ['Loser', 'BIGBANG']], [song, artist]) demo.launch()