Spaces:
Runtime error
Runtime error
import gradio as gr | |
from transformers import ViTImageProcessor, ViTForImageClassification | |
from PIL import Image | |
import requests | |
hotdog_url = 'https://potatorolls.com/wp-content/uploads/2020/10/Basic-Hot-Dogs-960x640.jpg' | |
hotdog_image = Image.open(requests.get(hotdog_url, stream=True).raw) | |
muffin_url = "https://www.recipetineats.com/wp-content/uploads/2023/05/Up-and-go-breakfast-muffins_9.jpg" | |
muffin_image = Image.open(requests.get(muffin_url, stream=True).raw) | |
juice_url = "https://recipes.net/wp-content/uploads/2024/01/how-to-drink-fresh-juice-1705739043.jpg" | |
juice_image = Image.open(requests.get(juice_url, stream=True).raw) | |
def snacks_classifier(input_image): | |
# Init model, transforms | |
processor = ViTImageProcessor.from_pretrained('yangswei/snacks_classification') | |
model = ViTForImageClassification.from_pretrained('yangswei/snacks_classification') | |
# inputs & outputs | |
inputs = processor(images=input_image, return_tensors="pt") | |
outputs = model(**inputs).logits.softmax(1) | |
labels = model.config.id2label | |
confidences = {labels[i]: outputs[0][i].item() for i in range(len(labels))} | |
return confidences | |
with gr.Blocks(theme=gr.themes.Base()) as demo: | |
gr.Interface(fn=snacks_classifier, inputs="image", outputs=gr.Label(num_top_classes=20, label="Prediction"), | |
examples=[hotdog_image, muffin_image, juice_image]) | |
demo.launch() |