yangheng commited on
Commit
6eca213
·
1 Parent(s): 88f8e2a
.gitignore CHANGED
@@ -31,6 +31,7 @@ CPDP/
31
  glove.840B.300d.txt
32
  glove.42B.300d.txt
33
  glove.twitter.27B.txt
 
34
 
35
  # project main files
36
  release_note.json
 
31
  glove.840B.300d.txt
32
  glove.42B.300d.txt
33
  glove.twitter.27B.txt
34
+ *CHECKPOINT/
35
 
36
  # project main files
37
  release_note.json
checkpoints-v2.0.json CHANGED
@@ -1,178 +1 @@
1
- {
2
- "2.0.0": {
3
- "APC": {
4
- "multilingual": {
5
- "id": "",
6
- "Training Model": "FAST-LSA-T-V2-Deberta",
7
- "Training Dataset": "APCDatasetList.Multilingual",
8
- "Language": "Multilingual",
9
- "Description": "Trained on RTX3090",
10
- "Available Version": "1.10.5+",
11
- "Checkpoint File": "fast_lcf_bert_Multilingual_acc_87.18_f1_83.11.zip",
12
- "Author": "H, Yang ([email protected])"
13
- },
14
- "multilingual2": {
15
- "id": "",
16
- "Training Model": "FAST-LSA-T-V2-Deberta",
17
- "Training Dataset": "APCDatasetList.Multilingual",
18
- "Language": "Multilingual",
19
- "Description": "Trained on RTX3090",
20
- "Available Version": "1.10.5+",
21
- "Checkpoint File": "fast_lcf_bert_Multilingual_acc_82.66_f1_82.06.zip",
22
- "Author": "H, Yang ([email protected])"
23
- },
24
- "english": {
25
- "id": "",
26
- "Training Model": "FAST-LSA-T-V2-Deberta",
27
- "Training Dataset": "APCDatasetList.English",
28
- "Language": "English",
29
- "Description": "Trained on RTX3090",
30
- "Available Version": "1.10.5+",
31
- "Checkpoint File": "fast_lsa_t_v2_English_acc_82.21_f1_81.81.zip",
32
- "Author": "H, Yang ([email protected])"
33
- },
34
- "chinese": {
35
- "id": "",
36
- "Training Model": "FAST-LSA-T-V2-Deberta",
37
- "Training Dataset": "APCDatasetList.Chinese",
38
- "Language": "Chinese",
39
- "Description": "Trained on RTX3090",
40
- "Available Version": "1.10.5+",
41
- "Checkpoint File": "fast_lsa_t_v2_Chinese_acc_96.0_f1_95.1.zip",
42
- "Author": "H, Yang ([email protected])"
43
- }
44
- },
45
- "ATEPC": {
46
- "multilingual": {
47
- "id": "",
48
- "Training Model": "FAST-LCF-ATEPC",
49
- "Training Dataset": "ABSADatasets.Multilingual",
50
- "Language": "Multilingual",
51
- "Description": "Trained on RTX3090",
52
- "Available Version": "1.16.0+",
53
- "Checkpoint File": "fast_lcf_atepc_Multilingual_cdw_apcacc_80.81_apcf1_73.75_atef1_76.01.zip",
54
- "Author": "H, Yang ([email protected])"
55
- },
56
- "multilingual2": {
57
- "id": "",
58
- "Training Model": "FAST-LCF-ATEPC",
59
- "Training Dataset": "ABSADatasets.Multilingual",
60
- "Language": "Multilingual",
61
- "Description": "Trained on RTX3090",
62
- "Available Version": "1.16.0+",
63
- "Checkpoint File": "fast_lcf_atepc_Multilingual_cdw_apcacc_78.08_apcf1_77.81_atef1_75.41.zip",
64
- "Author": "H, Yang ([email protected])"
65
- },
66
- "english": {
67
- "id": "",
68
- "Training Model": "FAST-LCF-ATEPC",
69
- "Training Dataset": "ATEPCDatasetList.English",
70
- "Language": "English",
71
- "Description": "Trained on RTX3090",
72
- "Available Version": "1.10.5+",
73
- "Checkpoint File": "fast_lcf_atepc_English_cdw_apcacc_82.36_apcf1_81.89_atef1_75.43.zip",
74
- "Author": "H, Yang ([email protected])"
75
- },
76
- "chinese": {
77
- "id": "",
78
- "Training Model": "FAST-LCF-ATEPC",
79
- "Training Dataset": "ATEPCDatasetList.Chinese",
80
- "Language": "Chinese",
81
- "Description": "Trained on RTX3090",
82
- "Available Version": "1.10.5+",
83
- "Checkpoint File": "fast_lcf_atepc_Chinese_cdw_apcacc_96.22_apcf1_95.32_atef1_78.73.zip",
84
- "Author": "H, Yang ([email protected])"
85
- }
86
- },
87
- "RNAC": {
88
- "degrad_lstm": {
89
- "id": "",
90
- "Training Model": "LSTM",
91
- "Training Dataset": "ABSADatasets.Multilingual",
92
- "Language": "RNA",
93
- "Description": "Trained on RTX3090",
94
- "Available Version": "1.16.0+",
95
- "Checkpoint File": "lstm_degrad_acc_85.26_f1_84.62.zip",
96
- "Author": "H, Yang ([email protected])"
97
- },
98
- "degrad_bert": {
99
- "id": "",
100
- "Training Model": "MLP",
101
- "Training Dataset": "Degrad",
102
- "Language": "RNA",
103
- "Description": "Trained on RTX3090",
104
- "Available Version": "1.16.0+",
105
- "Checkpoint File": "bert_mlp_degrad_acc_87.44_f1_86.99.zip",
106
- "Author": "H, Yang ([email protected])"
107
- }
108
- },
109
- "TAD": {
110
- "tad-sst2": {
111
- "id": "",
112
- "Training Model": "TAD",
113
- "Training Dataset": "SST2",
114
- "Language": "English",
115
- "Description": "Trained on RTX3090",
116
- "Available Version": "1.15+",
117
- "Checkpoint File": "TAD-SST2.zip",
118
- "Author": "H, Yang ([email protected])"
119
- },
120
- "tad-agnews10k": {
121
- "id": "",
122
- "Training Model": "TAD",
123
- "Training Dataset": "AGNews",
124
- "Language": "English",
125
- "Description": "Trained on RTX3090",
126
- "Available Version": "1.15+",
127
- "Checkpoint File": "TAD-AGNews10K.zip",
128
- "Author": "H, Yang ([email protected])"
129
- },
130
- "tad-amazon": {
131
- "id": "",
132
- "Training Model": "TAD",
133
- "Training Dataset": "AGNews",
134
- "Language": "English",
135
- "Description": "Trained on RTX3090",
136
- "Available Version": "1.15+",
137
- "Checkpoint File": "TAD-Amazon.zip",
138
- "Author": "H, Yang ([email protected])"
139
- }
140
- },
141
- "CDD": {
142
- "promise": {
143
- "id": "",
144
- "Training Model": "CodeT5-small",
145
- "Training Dataset": "Promise",
146
- "Language": "Code",
147
- "Description": "Trained on RTX3090",
148
- "Available Version": "1.16.0+",
149
- "Checkpoint File": "bert_mlp_all_cpdp_acc_75.33_f1_73.52.zip",
150
- "Author": "H, Yang ([email protected])"
151
- }
152
- },
153
- "ASTE": {
154
- "english": {
155
- "id": "",
156
- "Training Model": "DeBERTa-v3-Base",
157
- "Training Dataset": "SemEval",
158
- "Language": "English",
159
- "Description": "Trained on RTX3090",
160
- "Available Version": "1.16.0+",
161
- "Checkpoint File": "EMCGCN_SemEval_f1_74.01.zip",
162
- "Author": "H, Yang ([email protected])"
163
- }
164
- },
165
- "UPPERTASKCODE": {
166
- "promise": {
167
- "id": "",
168
- "Training Model": "CodeT5-small",
169
- "Training Dataset": "DatasetName",
170
- "Language": "",
171
- "Description": "Trained on RTX3090",
172
- "Available Version": "1.16.0+",
173
- "Checkpoint File": "lstm_degrad_acc_85.26_f1_84.62.zip",
174
- "Author": "H, Yang ([email protected])"
175
- }
176
- }
177
- }
178
- }
 
1
+ {"2.0.0": {"APC": {"multilingual": {"id": "", "Training Model": "FAST-LSA-T-V2-Deberta", "Training Dataset": "APCDatasetList.Multilingual", "Language": "Multilingual", "Description": "Trained on RTX3090", "Available Version": "1.10.5+", "Checkpoint File": "fast_lcf_bert_Multilingual_acc_87.18_f1_83.11.zip", "Author": "H, Yang ([email protected])"}, "multilingual2": {"id": "", "Training Model": "FAST-LSA-T-V2-Deberta", "Training Dataset": "APCDatasetList.Multilingual", "Language": "Multilingual", "Description": "Trained on RTX3090", "Available Version": "1.10.5+", "Checkpoint File": "fast_lcf_bert_Multilingual_acc_82.66_f1_82.06.zip", "Author": "H, Yang ([email protected])"}, "english": {"id": "", "Training Model": "FAST-LSA-T-V2-Deberta", "Training Dataset": "APCDatasetList.English", "Language": "English", "Description": "Trained on RTX3090", "Available Version": "1.10.5+", "Checkpoint File": "fast_lsa_t_v2_English_acc_82.21_f1_81.81.zip", "Author": "H, Yang ([email protected])"}, "chinese": {"id": "", "Training Model": "FAST-LSA-T-V2-Deberta", "Training Dataset": "APCDatasetList.Chinese", "Language": "Chinese", "Description": "Trained on RTX3090", "Available Version": "1.10.5+", "Checkpoint File": "fast_lsa_t_v2_Chinese_acc_96.0_f1_95.1.zip", "Author": "H, Yang ([email protected])"}}, "ATEPC": {"multilingual": {"id": "", "Training Model": "FAST-LCF-ATEPC", "Training Dataset": "ABSADatasets.Multilingual", "Language": "Multilingual", "Description": "Trained on RTX3090", "Available Version": "1.16.0+", "Checkpoint File": "fast_lcf_atepc_Multilingual_cdw_apcacc_80.81_apcf1_73.75_atef1_76.01.zip", "Author": "H, Yang ([email protected])"}, "multilingual2": {"id": "", "Training Model": "FAST-LCF-ATEPC", "Training Dataset": "ABSADatasets.Multilingual", "Language": "Multilingual", "Description": "Trained on RTX3090", "Available Version": "1.16.0+", "Checkpoint File": "fast_lcf_atepc_Multilingual_cdw_apcacc_78.08_apcf1_77.81_atef1_75.41.zip", "Author": "H, Yang ([email protected])"}, "english": {"id": "", "Training Model": "FAST-LCF-ATEPC", "Training Dataset": "ATEPCDatasetList.English", "Language": "English", "Description": "Trained on RTX3090", "Available Version": "1.10.5+", "Checkpoint File": "fast_lcf_atepc_English_cdw_apcacc_82.36_apcf1_81.89_atef1_75.43.zip", "Author": "H, Yang ([email protected])"}, "chinese": {"id": "", "Training Model": "FAST-LCF-ATEPC", "Training Dataset": "ATEPCDatasetList.Chinese", "Language": "Chinese", "Description": "Trained on RTX3090", "Available Version": "1.10.5+", "Checkpoint File": "fast_lcf_atepc_Chinese_cdw_apcacc_96.22_apcf1_95.32_atef1_78.73.zip", "Author": "H, Yang ([email protected])"}}, "RNAC": {"degrad_lstm": {"id": "", "Training Model": "LSTM", "Training Dataset": "ABSADatasets.Multilingual", "Language": "RNA", "Description": "Trained on RTX3090", "Available Version": "1.16.0+", "Checkpoint File": "lstm_degrad_acc_85.26_f1_84.62.zip", "Author": "H, Yang ([email protected])"}, "degrad_bert": {"id": "", "Training Model": "MLP", "Training Dataset": "Degrad", "Language": "RNA", "Description": "Trained on RTX3090", "Available Version": "1.16.0+", "Checkpoint File": "bert_mlp_degrad_acc_87.44_f1_86.99.zip", "Author": "H, Yang ([email protected])"}}, "TAD": {"tad-sst2": {"id": "", "Training Model": "TAD", "Training Dataset": "SST2", "Language": "English", "Description": "Trained on RTX3090", "Available Version": "1.15+", "Checkpoint File": "TAD-SST2.zip", "Author": "H, Yang ([email protected])"}, "tad-agnews10k": {"id": "", "Training Model": "TAD", "Training Dataset": "AGNews", "Language": "English", "Description": "Trained on RTX3090", "Available Version": "1.15+", "Checkpoint File": "TAD-AGNews10K.zip", "Author": "H, Yang ([email protected])"}, "tad-amazon": {"id": "", "Training Model": "TAD", "Training Dataset": "AGNews", "Language": "English", "Description": "Trained on RTX3090", "Available Version": "1.15+", "Checkpoint File": "TAD-Amazon.zip", "Author": "H, Yang ([email protected])"}}, "CDD": {"promise": {"id": "", "Training Model": "CodeT5-small", "Training Dataset": "Promise", "Language": "Code", "Description": "Trained on RTX3090", "Available Version": "1.16.0+", "Checkpoint File": "bert_mlp_all_cpdp_acc_75.33_f1_73.52.zip", "Author": "H, Yang ([email protected])"}}, "ASTE": {"english": {"id": "", "Training Model": "DeBERTa-v3-Base", "Training Dataset": "SemEval", "Language": "English", "Description": "Trained on RTX3090", "Available Version": "1.16.0+", "Checkpoint File": "EMCGCN_SemEval_f1_74.01.zip", "Author": "H, Yang ([email protected])"}}, "UPPERTASKCODE": {"promise": {"id": "", "Training Model": "CodeT5-small", "Training Dataset": "DatasetName", "Language": "", "Description": "Trained on RTX3090", "Available Version": "1.16.0+", "Checkpoint File": "lstm_degrad_acc_85.26_f1_84.62.zip", "Author": "H, Yang ([email protected])"}}}}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
compress_datasets.py CHANGED
@@ -40,11 +40,12 @@ def cascade_zip_datasets():
40
  fprint(f"compressing dataset: {d}")
41
  dataset_name = Path(d).name
42
  zip_file = zipfile.ZipFile(
43
- f"integrated_datasets/{task_name}.{dataset_name}.zip".lower(), "w", zipfile.ZIP_DEFLATED
 
 
44
  )
45
 
46
  for root, dirs, files in os.walk(d):
47
-
48
  for file in files:
49
  zip_file.write(os.path.join(root, file).lower())
50
 
 
40
  fprint(f"compressing dataset: {d}")
41
  dataset_name = Path(d).name
42
  zip_file = zipfile.ZipFile(
43
+ f"integrated_datasets/{task_name}.{dataset_name}.zip".lower(),
44
+ "w",
45
+ zipfile.ZIP_DEFLATED,
46
  )
47
 
48
  for root, dirs, files in os.walk(d):
 
49
  for file in files:
50
  zip_file.write(os.path.join(root, file).lower())
51
 
emergency_notification.txt CHANGED
@@ -1,2 +1,5 @@
 
 
 
1
  If you find any problems, please report them on GitHub. Thanks!
2
- The v2.x versions are not compatible with Google Colab. Please downgrade to 1.16.27.
 
1
+
2
+ [New Feature] Aspect Sentiment Triplet Extraction in v2.1.0 test version
3
+
4
  If you find any problems, please report them on GitHub. Thanks!
5
+ The v2.x versions are not compatible with Google Colab. Please downgrade to 1.16.27.
requirements.txt CHANGED
@@ -1 +1 @@
1
- pyabsa>=2.0.0
 
1
+ pyabsa>=2.1.0