Spaces:
Running
Running
update
Browse files- .gitignore +1 -0
- checkpoints-v2.0.json +1 -178
- compress_datasets.py +3 -2
- emergency_notification.txt +4 -1
- requirements.txt +1 -1
.gitignore
CHANGED
@@ -31,6 +31,7 @@ CPDP/
|
|
31 |
glove.840B.300d.txt
|
32 |
glove.42B.300d.txt
|
33 |
glove.twitter.27B.txt
|
|
|
34 |
|
35 |
# project main files
|
36 |
release_note.json
|
|
|
31 |
glove.840B.300d.txt
|
32 |
glove.42B.300d.txt
|
33 |
glove.twitter.27B.txt
|
34 |
+
*CHECKPOINT/
|
35 |
|
36 |
# project main files
|
37 |
release_note.json
|
checkpoints-v2.0.json
CHANGED
@@ -1,178 +1 @@
|
|
1 |
-
{
|
2 |
-
"2.0.0": {
|
3 |
-
"APC": {
|
4 |
-
"multilingual": {
|
5 |
-
"id": "",
|
6 |
-
"Training Model": "FAST-LSA-T-V2-Deberta",
|
7 |
-
"Training Dataset": "APCDatasetList.Multilingual",
|
8 |
-
"Language": "Multilingual",
|
9 |
-
"Description": "Trained on RTX3090",
|
10 |
-
"Available Version": "1.10.5+",
|
11 |
-
"Checkpoint File": "fast_lcf_bert_Multilingual_acc_87.18_f1_83.11.zip",
|
12 |
-
"Author": "H, Yang ([email protected])"
|
13 |
-
},
|
14 |
-
"multilingual2": {
|
15 |
-
"id": "",
|
16 |
-
"Training Model": "FAST-LSA-T-V2-Deberta",
|
17 |
-
"Training Dataset": "APCDatasetList.Multilingual",
|
18 |
-
"Language": "Multilingual",
|
19 |
-
"Description": "Trained on RTX3090",
|
20 |
-
"Available Version": "1.10.5+",
|
21 |
-
"Checkpoint File": "fast_lcf_bert_Multilingual_acc_82.66_f1_82.06.zip",
|
22 |
-
"Author": "H, Yang ([email protected])"
|
23 |
-
},
|
24 |
-
"english": {
|
25 |
-
"id": "",
|
26 |
-
"Training Model": "FAST-LSA-T-V2-Deberta",
|
27 |
-
"Training Dataset": "APCDatasetList.English",
|
28 |
-
"Language": "English",
|
29 |
-
"Description": "Trained on RTX3090",
|
30 |
-
"Available Version": "1.10.5+",
|
31 |
-
"Checkpoint File": "fast_lsa_t_v2_English_acc_82.21_f1_81.81.zip",
|
32 |
-
"Author": "H, Yang ([email protected])"
|
33 |
-
},
|
34 |
-
"chinese": {
|
35 |
-
"id": "",
|
36 |
-
"Training Model": "FAST-LSA-T-V2-Deberta",
|
37 |
-
"Training Dataset": "APCDatasetList.Chinese",
|
38 |
-
"Language": "Chinese",
|
39 |
-
"Description": "Trained on RTX3090",
|
40 |
-
"Available Version": "1.10.5+",
|
41 |
-
"Checkpoint File": "fast_lsa_t_v2_Chinese_acc_96.0_f1_95.1.zip",
|
42 |
-
"Author": "H, Yang ([email protected])"
|
43 |
-
}
|
44 |
-
},
|
45 |
-
"ATEPC": {
|
46 |
-
"multilingual": {
|
47 |
-
"id": "",
|
48 |
-
"Training Model": "FAST-LCF-ATEPC",
|
49 |
-
"Training Dataset": "ABSADatasets.Multilingual",
|
50 |
-
"Language": "Multilingual",
|
51 |
-
"Description": "Trained on RTX3090",
|
52 |
-
"Available Version": "1.16.0+",
|
53 |
-
"Checkpoint File": "fast_lcf_atepc_Multilingual_cdw_apcacc_80.81_apcf1_73.75_atef1_76.01.zip",
|
54 |
-
"Author": "H, Yang ([email protected])"
|
55 |
-
},
|
56 |
-
"multilingual2": {
|
57 |
-
"id": "",
|
58 |
-
"Training Model": "FAST-LCF-ATEPC",
|
59 |
-
"Training Dataset": "ABSADatasets.Multilingual",
|
60 |
-
"Language": "Multilingual",
|
61 |
-
"Description": "Trained on RTX3090",
|
62 |
-
"Available Version": "1.16.0+",
|
63 |
-
"Checkpoint File": "fast_lcf_atepc_Multilingual_cdw_apcacc_78.08_apcf1_77.81_atef1_75.41.zip",
|
64 |
-
"Author": "H, Yang ([email protected])"
|
65 |
-
},
|
66 |
-
"english": {
|
67 |
-
"id": "",
|
68 |
-
"Training Model": "FAST-LCF-ATEPC",
|
69 |
-
"Training Dataset": "ATEPCDatasetList.English",
|
70 |
-
"Language": "English",
|
71 |
-
"Description": "Trained on RTX3090",
|
72 |
-
"Available Version": "1.10.5+",
|
73 |
-
"Checkpoint File": "fast_lcf_atepc_English_cdw_apcacc_82.36_apcf1_81.89_atef1_75.43.zip",
|
74 |
-
"Author": "H, Yang ([email protected])"
|
75 |
-
},
|
76 |
-
"chinese": {
|
77 |
-
"id": "",
|
78 |
-
"Training Model": "FAST-LCF-ATEPC",
|
79 |
-
"Training Dataset": "ATEPCDatasetList.Chinese",
|
80 |
-
"Language": "Chinese",
|
81 |
-
"Description": "Trained on RTX3090",
|
82 |
-
"Available Version": "1.10.5+",
|
83 |
-
"Checkpoint File": "fast_lcf_atepc_Chinese_cdw_apcacc_96.22_apcf1_95.32_atef1_78.73.zip",
|
84 |
-
"Author": "H, Yang ([email protected])"
|
85 |
-
}
|
86 |
-
},
|
87 |
-
"RNAC": {
|
88 |
-
"degrad_lstm": {
|
89 |
-
"id": "",
|
90 |
-
"Training Model": "LSTM",
|
91 |
-
"Training Dataset": "ABSADatasets.Multilingual",
|
92 |
-
"Language": "RNA",
|
93 |
-
"Description": "Trained on RTX3090",
|
94 |
-
"Available Version": "1.16.0+",
|
95 |
-
"Checkpoint File": "lstm_degrad_acc_85.26_f1_84.62.zip",
|
96 |
-
"Author": "H, Yang ([email protected])"
|
97 |
-
},
|
98 |
-
"degrad_bert": {
|
99 |
-
"id": "",
|
100 |
-
"Training Model": "MLP",
|
101 |
-
"Training Dataset": "Degrad",
|
102 |
-
"Language": "RNA",
|
103 |
-
"Description": "Trained on RTX3090",
|
104 |
-
"Available Version": "1.16.0+",
|
105 |
-
"Checkpoint File": "bert_mlp_degrad_acc_87.44_f1_86.99.zip",
|
106 |
-
"Author": "H, Yang ([email protected])"
|
107 |
-
}
|
108 |
-
},
|
109 |
-
"TAD": {
|
110 |
-
"tad-sst2": {
|
111 |
-
"id": "",
|
112 |
-
"Training Model": "TAD",
|
113 |
-
"Training Dataset": "SST2",
|
114 |
-
"Language": "English",
|
115 |
-
"Description": "Trained on RTX3090",
|
116 |
-
"Available Version": "1.15+",
|
117 |
-
"Checkpoint File": "TAD-SST2.zip",
|
118 |
-
"Author": "H, Yang ([email protected])"
|
119 |
-
},
|
120 |
-
"tad-agnews10k": {
|
121 |
-
"id": "",
|
122 |
-
"Training Model": "TAD",
|
123 |
-
"Training Dataset": "AGNews",
|
124 |
-
"Language": "English",
|
125 |
-
"Description": "Trained on RTX3090",
|
126 |
-
"Available Version": "1.15+",
|
127 |
-
"Checkpoint File": "TAD-AGNews10K.zip",
|
128 |
-
"Author": "H, Yang ([email protected])"
|
129 |
-
},
|
130 |
-
"tad-amazon": {
|
131 |
-
"id": "",
|
132 |
-
"Training Model": "TAD",
|
133 |
-
"Training Dataset": "AGNews",
|
134 |
-
"Language": "English",
|
135 |
-
"Description": "Trained on RTX3090",
|
136 |
-
"Available Version": "1.15+",
|
137 |
-
"Checkpoint File": "TAD-Amazon.zip",
|
138 |
-
"Author": "H, Yang ([email protected])"
|
139 |
-
}
|
140 |
-
},
|
141 |
-
"CDD": {
|
142 |
-
"promise": {
|
143 |
-
"id": "",
|
144 |
-
"Training Model": "CodeT5-small",
|
145 |
-
"Training Dataset": "Promise",
|
146 |
-
"Language": "Code",
|
147 |
-
"Description": "Trained on RTX3090",
|
148 |
-
"Available Version": "1.16.0+",
|
149 |
-
"Checkpoint File": "bert_mlp_all_cpdp_acc_75.33_f1_73.52.zip",
|
150 |
-
"Author": "H, Yang ([email protected])"
|
151 |
-
}
|
152 |
-
},
|
153 |
-
"ASTE": {
|
154 |
-
"english": {
|
155 |
-
"id": "",
|
156 |
-
"Training Model": "DeBERTa-v3-Base",
|
157 |
-
"Training Dataset": "SemEval",
|
158 |
-
"Language": "English",
|
159 |
-
"Description": "Trained on RTX3090",
|
160 |
-
"Available Version": "1.16.0+",
|
161 |
-
"Checkpoint File": "EMCGCN_SemEval_f1_74.01.zip",
|
162 |
-
"Author": "H, Yang ([email protected])"
|
163 |
-
}
|
164 |
-
},
|
165 |
-
"UPPERTASKCODE": {
|
166 |
-
"promise": {
|
167 |
-
"id": "",
|
168 |
-
"Training Model": "CodeT5-small",
|
169 |
-
"Training Dataset": "DatasetName",
|
170 |
-
"Language": "",
|
171 |
-
"Description": "Trained on RTX3090",
|
172 |
-
"Available Version": "1.16.0+",
|
173 |
-
"Checkpoint File": "lstm_degrad_acc_85.26_f1_84.62.zip",
|
174 |
-
"Author": "H, Yang ([email protected])"
|
175 |
-
}
|
176 |
-
}
|
177 |
-
}
|
178 |
-
}
|
|
|
1 |
+
{"2.0.0": {"APC": {"multilingual": {"id": "", "Training Model": "FAST-LSA-T-V2-Deberta", "Training Dataset": "APCDatasetList.Multilingual", "Language": "Multilingual", "Description": "Trained on RTX3090", "Available Version": "1.10.5+", "Checkpoint File": "fast_lcf_bert_Multilingual_acc_87.18_f1_83.11.zip", "Author": "H, Yang ([email protected])"}, "multilingual2": {"id": "", "Training Model": "FAST-LSA-T-V2-Deberta", "Training Dataset": "APCDatasetList.Multilingual", "Language": "Multilingual", "Description": "Trained on RTX3090", "Available Version": "1.10.5+", "Checkpoint File": "fast_lcf_bert_Multilingual_acc_82.66_f1_82.06.zip", "Author": "H, Yang ([email protected])"}, "english": {"id": "", "Training Model": "FAST-LSA-T-V2-Deberta", "Training Dataset": "APCDatasetList.English", "Language": "English", "Description": "Trained on RTX3090", "Available Version": "1.10.5+", "Checkpoint File": "fast_lsa_t_v2_English_acc_82.21_f1_81.81.zip", "Author": "H, Yang ([email protected])"}, "chinese": {"id": "", "Training Model": "FAST-LSA-T-V2-Deberta", "Training Dataset": "APCDatasetList.Chinese", "Language": "Chinese", "Description": "Trained on RTX3090", "Available Version": "1.10.5+", "Checkpoint File": "fast_lsa_t_v2_Chinese_acc_96.0_f1_95.1.zip", "Author": "H, Yang ([email protected])"}}, "ATEPC": {"multilingual": {"id": "", "Training Model": "FAST-LCF-ATEPC", "Training Dataset": "ABSADatasets.Multilingual", "Language": "Multilingual", "Description": "Trained on RTX3090", "Available Version": "1.16.0+", "Checkpoint File": "fast_lcf_atepc_Multilingual_cdw_apcacc_80.81_apcf1_73.75_atef1_76.01.zip", "Author": "H, Yang ([email protected])"}, "multilingual2": {"id": "", "Training Model": "FAST-LCF-ATEPC", "Training Dataset": "ABSADatasets.Multilingual", "Language": "Multilingual", "Description": "Trained on RTX3090", "Available Version": "1.16.0+", "Checkpoint File": "fast_lcf_atepc_Multilingual_cdw_apcacc_78.08_apcf1_77.81_atef1_75.41.zip", "Author": "H, Yang ([email protected])"}, "english": {"id": "", "Training Model": "FAST-LCF-ATEPC", "Training Dataset": "ATEPCDatasetList.English", "Language": "English", "Description": "Trained on RTX3090", "Available Version": "1.10.5+", "Checkpoint File": "fast_lcf_atepc_English_cdw_apcacc_82.36_apcf1_81.89_atef1_75.43.zip", "Author": "H, Yang ([email protected])"}, "chinese": {"id": "", "Training Model": "FAST-LCF-ATEPC", "Training Dataset": "ATEPCDatasetList.Chinese", "Language": "Chinese", "Description": "Trained on RTX3090", "Available Version": "1.10.5+", "Checkpoint File": "fast_lcf_atepc_Chinese_cdw_apcacc_96.22_apcf1_95.32_atef1_78.73.zip", "Author": "H, Yang ([email protected])"}}, "RNAC": {"degrad_lstm": {"id": "", "Training Model": "LSTM", "Training Dataset": "ABSADatasets.Multilingual", "Language": "RNA", "Description": "Trained on RTX3090", "Available Version": "1.16.0+", "Checkpoint File": "lstm_degrad_acc_85.26_f1_84.62.zip", "Author": "H, Yang ([email protected])"}, "degrad_bert": {"id": "", "Training Model": "MLP", "Training Dataset": "Degrad", "Language": "RNA", "Description": "Trained on RTX3090", "Available Version": "1.16.0+", "Checkpoint File": "bert_mlp_degrad_acc_87.44_f1_86.99.zip", "Author": "H, Yang ([email protected])"}}, "TAD": {"tad-sst2": {"id": "", "Training Model": "TAD", "Training Dataset": "SST2", "Language": "English", "Description": "Trained on RTX3090", "Available Version": "1.15+", "Checkpoint File": "TAD-SST2.zip", "Author": "H, Yang ([email protected])"}, "tad-agnews10k": {"id": "", "Training Model": "TAD", "Training Dataset": "AGNews", "Language": "English", "Description": "Trained on RTX3090", "Available Version": "1.15+", "Checkpoint File": "TAD-AGNews10K.zip", "Author": "H, Yang ([email protected])"}, "tad-amazon": {"id": "", "Training Model": "TAD", "Training Dataset": "AGNews", "Language": "English", "Description": "Trained on RTX3090", "Available Version": "1.15+", "Checkpoint File": "TAD-Amazon.zip", "Author": "H, Yang ([email protected])"}}, "CDD": {"promise": {"id": "", "Training Model": "CodeT5-small", "Training Dataset": "Promise", "Language": "Code", "Description": "Trained on RTX3090", "Available Version": "1.16.0+", "Checkpoint File": "bert_mlp_all_cpdp_acc_75.33_f1_73.52.zip", "Author": "H, Yang ([email protected])"}}, "ASTE": {"english": {"id": "", "Training Model": "DeBERTa-v3-Base", "Training Dataset": "SemEval", "Language": "English", "Description": "Trained on RTX3090", "Available Version": "1.16.0+", "Checkpoint File": "EMCGCN_SemEval_f1_74.01.zip", "Author": "H, Yang ([email protected])"}}, "UPPERTASKCODE": {"promise": {"id": "", "Training Model": "CodeT5-small", "Training Dataset": "DatasetName", "Language": "", "Description": "Trained on RTX3090", "Available Version": "1.16.0+", "Checkpoint File": "lstm_degrad_acc_85.26_f1_84.62.zip", "Author": "H, Yang ([email protected])"}}}}
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
compress_datasets.py
CHANGED
@@ -40,11 +40,12 @@ def cascade_zip_datasets():
|
|
40 |
fprint(f"compressing dataset: {d}")
|
41 |
dataset_name = Path(d).name
|
42 |
zip_file = zipfile.ZipFile(
|
43 |
-
f"integrated_datasets/{task_name}.{dataset_name}.zip".lower(),
|
|
|
|
|
44 |
)
|
45 |
|
46 |
for root, dirs, files in os.walk(d):
|
47 |
-
|
48 |
for file in files:
|
49 |
zip_file.write(os.path.join(root, file).lower())
|
50 |
|
|
|
40 |
fprint(f"compressing dataset: {d}")
|
41 |
dataset_name = Path(d).name
|
42 |
zip_file = zipfile.ZipFile(
|
43 |
+
f"integrated_datasets/{task_name}.{dataset_name}.zip".lower(),
|
44 |
+
"w",
|
45 |
+
zipfile.ZIP_DEFLATED,
|
46 |
)
|
47 |
|
48 |
for root, dirs, files in os.walk(d):
|
|
|
49 |
for file in files:
|
50 |
zip_file.write(os.path.join(root, file).lower())
|
51 |
|
emergency_notification.txt
CHANGED
@@ -1,2 +1,5 @@
|
|
|
|
|
|
|
|
1 |
If you find any problems, please report them on GitHub. Thanks!
|
2 |
-
The v2.x versions are not compatible with Google Colab. Please downgrade to 1.16.27.
|
|
|
1 |
+
|
2 |
+
[New Feature] Aspect Sentiment Triplet Extraction in v2.1.0 test version
|
3 |
+
|
4 |
If you find any problems, please report them on GitHub. Thanks!
|
5 |
+
The v2.x versions are not compatible with Google Colab. Please downgrade to 1.16.27.
|
requirements.txt
CHANGED
@@ -1 +1 @@
|
|
1 |
-
pyabsa>=2.
|
|
|
1 |
+
pyabsa>=2.1.0
|