yangheng commited on
Commit
48041d0
·
1 Parent(s): 71f1fed

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +148 -62
app.py CHANGED
@@ -8,22 +8,20 @@
8
  # Copyright (C) 2023. All Rights Reserved.
9
 
10
  import random
 
 
11
  import gradio as gr
12
  import pandas as pd
13
  from pyabsa import (
14
  download_all_available_datasets,
15
- AspectTermExtraction as ATEPC,
16
  TaskCodeOption,
17
  available_checkpoints,
18
  )
19
- from pyabsa import AspectSentimentTripletExtraction as ASTE
20
  from pyabsa.utils.data_utils.dataset_manager import detect_infer_dataset
21
 
22
  download_all_available_datasets()
23
 
24
- atepc_dataset_items = {dataset.name: dataset for dataset in ATEPC.ATEPCDatasetList()}
25
- aste_dataset_items = {dataset.name: dataset for dataset in ASTE.ASTEDatasetList()}
26
-
27
 
28
  def get_atepc_example(dataset):
29
  task = TaskCodeOption.Aspect_Polarity_Classification
@@ -66,18 +64,66 @@ def get_aste_example(dataset):
66
  return sorted(set(lines), key=lines.index)
67
 
68
 
69
- available_checkpoints("ASTE", True)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
70
 
71
- atepc_dataset_dict = {
72
- dataset.name: get_atepc_example(dataset.name)
73
- for dataset in ATEPC.ATEPCDatasetList()
74
- }
75
- aspect_extractor = ATEPC.AspectExtractor(checkpoint="multilingual")
76
 
77
- aste_dataset_dict = {
78
- dataset.name: get_aste_example(dataset.name) for dataset in ASTE.ASTEDatasetList()
79
- }
80
- triplet_extractor = ASTE.AspectSentimentTripletExtractor(checkpoint="multilingual")
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
81
 
82
 
83
  def perform_atepc_inference(text, dataset):
@@ -113,68 +159,108 @@ def perform_aste_inference(text, dataset):
113
  return pred_triplets, true_triplets, "{}".format(text)
114
 
115
 
116
- demo = gr.Blocks()
 
 
 
 
117
 
118
- with demo:
119
- with gr.Row():
120
 
121
- with gr.Column():
122
- gr.Markdown("# <p align='center'>Aspect Sentiment Triplet Extraction !</p>")
 
123
 
124
- with gr.Row():
125
- with gr.Column():
126
- aste_input_sentence = gr.Textbox(
127
- placeholder="Leave this box blank and choose a dataset will give you a random example...",
128
- label="Example:",
129
- )
130
- gr.Markdown(
131
- "You can find code and dataset at [ASTE examples](https://github.com/yangheng95/PyABSA/tree/v2/examples-v2/aspect_sentiment_triplet_extration)"
132
- )
133
- aste_dataset_ids = gr.Radio(
134
- choices=[dataset.name for dataset in ASTE.ASTEDatasetList()[:-1]],
135
- value="Restaurant14",
136
- label="Datasets",
137
- )
138
- aste_inference_button = gr.Button("Let's go!")
139
 
140
- aste_output_text = gr.TextArea(label="Example:")
141
- aste_output_pred_df = gr.DataFrame(label="Predicted Triplets:")
142
- aste_output_true_df = gr.DataFrame(label="Original Triplets:")
143
 
144
- aste_inference_button.click(
145
- fn=perform_aste_inference,
146
- inputs=[aste_input_sentence, aste_dataset_ids],
147
- outputs=[aste_output_pred_df, aste_output_true_df, aste_output_text],
148
- )
149
 
150
- with gr.Column():
151
- gr.Markdown(
152
- "# <p align='center'>Multilingual Aspect-based Sentiment Analysis !</p>"
153
- )
154
  with gr.Row():
155
  with gr.Column():
156
- atepc_input_sentence = gr.Textbox(
 
 
157
  placeholder="Leave this box blank and choose a dataset will give you a random example...",
158
  label="Example:",
159
  )
160
- gr.Markdown(
161
- "You can find the datasets at [github.com/yangheng95/ABSADatasets](https://github.com/yangheng95/ABSADatasets/tree/v1.2/datasets/text_classification)"
162
- )
163
- atepc_dataset_ids = gr.Radio(
164
- choices=[dataset.name for dataset in ATEPC.ATEPCDatasetList()[:-1]],
165
- value="Laptop14",
166
  label="Datasets",
167
  )
168
- atepc_inference_button = gr.Button("Let's go!")
169
 
170
- atepc_output_text = gr.TextArea(label="Example:")
171
- atepc_output_df = gr.DataFrame(label="Prediction Results:")
172
 
173
- atepc_inference_button.click(
174
- fn=perform_atepc_inference,
175
- inputs=[atepc_input_sentence, atepc_dataset_ids],
176
- outputs=[atepc_output_df, atepc_output_text],
177
  )
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
178
  gr.Markdown(
179
  """### GitHub Repo: [PyABSA V2](https://github.com/yangheng95/PyABSA)
180
  ### Author: [Heng Yang](https://github.com/yangheng95) (杨恒)
@@ -183,4 +269,4 @@ with demo:
183
  """
184
  )
185
 
186
- demo.launch()
 
8
  # Copyright (C) 2023. All Rights Reserved.
9
 
10
  import random
11
+
12
+ import autocuda
13
  import gradio as gr
14
  import pandas as pd
15
  from pyabsa import (
16
  download_all_available_datasets,
 
17
  TaskCodeOption,
18
  available_checkpoints,
19
  )
20
+ from pyabsa import ABSAInstruction
21
  from pyabsa.utils.data_utils.dataset_manager import detect_infer_dataset
22
 
23
  download_all_available_datasets()
24
 
 
 
 
25
 
26
  def get_atepc_example(dataset):
27
  task = TaskCodeOption.Aspect_Polarity_Classification
 
64
  return sorted(set(lines), key=lines.index)
65
 
66
 
67
+ def get_acos_example(dataset):
68
+ task = 'ACOS'
69
+ dataset_file = detect_infer_dataset(acos_dataset_items[dataset], task)
70
+
71
+ for fname in dataset_file:
72
+ lines = []
73
+ if isinstance(fname, str):
74
+ fname = [fname]
75
+
76
+ for f in fname:
77
+ print("loading: {}".format(f))
78
+ fin = open(f, "r", encoding="utf-8")
79
+ lines.extend(fin.readlines())
80
+ fin.close()
81
+ lines = [line.split('####')[0] for line in lines]
82
+ return sorted(set(lines), key=lines.index)
83
 
 
 
 
 
 
84
 
85
+ try:
86
+ from pyabsa import AspectTermExtraction as ATEPC
87
+
88
+ atepc_dataset_items = {dataset.name: dataset for dataset in ATEPC.ATEPCDatasetList()}
89
+ atepc_dataset_dict = {
90
+ dataset.name: get_atepc_example(dataset.name)
91
+ for dataset in ATEPC.ATEPCDatasetList()
92
+ }
93
+ aspect_extractor = ATEPC.AspectExtractor(checkpoint="multilingual")
94
+ except Exception as e:
95
+ print(e)
96
+ atepc_dataset_items = {}
97
+ atepc_dataset_dict = {}
98
+ aspect_extractor = None
99
+
100
+ try:
101
+ from pyabsa import AspectSentimentTripletExtraction as ASTE
102
+
103
+ aste_dataset_items = {dataset.name: dataset for dataset in ASTE.ASTEDatasetList()}
104
+ aste_dataset_dict = {
105
+ dataset.name: get_aste_example(dataset.name) for dataset in ASTE.ASTEDatasetList()
106
+ }
107
+ triplet_extractor = ASTE.AspectSentimentTripletExtractor(checkpoint="multilingual")
108
+ except Exception as e:
109
+ print(e)
110
+ aste_dataset_items = {}
111
+ aste_dataset_dict = {}
112
+ triplet_extractor = None
113
+
114
+ try:
115
+ from pyabsa import ABSAInstruction
116
+
117
+ acos_dataset_items = {dataset.name: dataset for dataset in ABSAInstruction.ACOSDatasetList()}
118
+ acos_dataset_dict = {
119
+ dataset.name: get_acos_example(dataset.name) for dataset in ABSAInstruction.ACOSDatasetList()
120
+ }
121
+ quadruple_extractor = ABSAInstruction.ABSAGenerator("multilingual")
122
+ except Exception as e:
123
+ print(e)
124
+ acos_dataset_items = {}
125
+ acos_dataset_dict = {}
126
+ quadruple_extractor = None
127
 
128
 
129
  def perform_atepc_inference(text, dataset):
 
159
  return pred_triplets, true_triplets, "{}".format(text)
160
 
161
 
162
+ def perform_acos_inference(text, dataset):
163
+ if not text:
164
+ text = acos_dataset_dict[dataset][
165
+ random.randint(0, len(acos_dataset_dict[dataset]) - 1)
166
+ ]
167
 
168
+ raw_output = quadruple_extractor.predict(text.split('####')[0])
 
169
 
170
+ result = raw_output['Quadruple']
171
+ result = pd.DataFrame(result)
172
+ return result, text
173
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
174
 
175
+ demo = gr.Blocks()
 
 
176
 
177
+ with demo:
178
+ with gr.Row():
 
 
 
179
 
180
+ if quadruple_extractor:
 
 
 
181
  with gr.Row():
182
  with gr.Column():
183
+ gr.Markdown("# <p align='center'> ABSA Quadruple Extraction (Experimental) </p>")
184
+
185
+ acos_input_sentence = gr.Textbox(
186
  placeholder="Leave this box blank and choose a dataset will give you a random example...",
187
  label="Example:",
188
  )
189
+ acos_dataset_ids = gr.Radio(
190
+ choices=[dataset.name for dataset in ABSAInstruction.ACOSDatasetList()],
191
+ value="Restaurant16",
 
 
 
192
  label="Datasets",
193
  )
194
+ acos_inference_button = gr.Button("Let's go!")
195
 
196
+ acos_output_text = gr.TextArea(label="Example:")
197
+ acos_output_pred_df = gr.DataFrame(label="Predicted Triplets:")
198
 
199
+ acos_inference_button.click(
200
+ fn=perform_acos_inference,
201
+ inputs=[acos_input_sentence, acos_dataset_ids],
202
+ outputs=[acos_output_pred_df, acos_output_text],
203
  )
204
+ with gr.Row():
205
+ if triplet_extractor:
206
+ with gr.Column():
207
+ gr.Markdown("# <p align='center'>Aspect Sentiment Triplet Extraction !</p>")
208
+
209
+ with gr.Row():
210
+ with gr.Column():
211
+ aste_input_sentence = gr.Textbox(
212
+ placeholder="Leave this box blank and choose a dataset will give you a random example...",
213
+ label="Example:",
214
+ )
215
+ gr.Markdown(
216
+ "You can find code and dataset at [ASTE examples](https://github.com/yangheng95/PyABSA/tree/v2/examples-v2/aspect_sentiment_triplet_extration)"
217
+ )
218
+ aste_dataset_ids = gr.Radio(
219
+ choices=[dataset.name for dataset in ASTE.ASTEDatasetList()[:-1]],
220
+ value="Restaurant14",
221
+ label="Datasets",
222
+ )
223
+ aste_inference_button = gr.Button("Let's go!")
224
+
225
+ aste_output_text = gr.TextArea(label="Example:")
226
+ aste_output_pred_df = gr.DataFrame(label="Predicted Triplets:")
227
+ aste_output_true_df = gr.DataFrame(label="Original Triplets:")
228
+
229
+ aste_inference_button.click(
230
+ fn=perform_aste_inference,
231
+ inputs=[aste_input_sentence, aste_dataset_ids],
232
+ outputs=[aste_output_pred_df, aste_output_true_df, aste_output_text],
233
+ )
234
+ if aspect_extractor:
235
+ with gr.Column():
236
+ gr.Markdown(
237
+ "# <p align='center'>Multilingual Aspect-based Sentiment Analysis !</p>"
238
+ )
239
+ with gr.Row():
240
+ with gr.Column():
241
+ atepc_input_sentence = gr.Textbox(
242
+ placeholder="Leave this box blank and choose a dataset will give you a random example...",
243
+ label="Example:",
244
+ )
245
+ gr.Markdown(
246
+ "You can find the datasets at [github.com/yangheng95/ABSADatasets](https://github.com/yangheng95/ABSADatasets/tree/v1.2/datasets/text_classification)"
247
+ )
248
+ atepc_dataset_ids = gr.Radio(
249
+ choices=[dataset.name for dataset in ATEPC.ATEPCDatasetList()[:-1]],
250
+ value="Laptop14",
251
+ label="Datasets",
252
+ )
253
+ atepc_inference_button = gr.Button("Let's go!")
254
+
255
+ atepc_output_text = gr.TextArea(label="Example:")
256
+ atepc_output_df = gr.DataFrame(label="Prediction Results:")
257
+
258
+ atepc_inference_button.click(
259
+ fn=perform_atepc_inference,
260
+ inputs=[atepc_input_sentence, atepc_dataset_ids],
261
+ outputs=[atepc_output_df, atepc_output_text],
262
+ )
263
+
264
  gr.Markdown(
265
  """### GitHub Repo: [PyABSA V2](https://github.com/yangheng95/PyABSA)
266
  ### Author: [Heng Yang](https://github.com/yangheng95) (杨恒)
 
269
  """
270
  )
271
 
272
+ demo.launch()