import gradio as gr import cv2 def predict_fn(img_path): #Read and tranform input image # preds=model.predict(img_path).json() og_img=cv2.imread(img_path) # img=binary_cv2(og_img,preds) # outputs = kp_predictor(img) # format is documented at https://detectron2.readthedocs.io/tutorials/models.html#model-output-format # print("outputs==".format(outputs["instances"].to("cpu"))) # p=np.asarray(outputs["instances"].to("cpu").pred_keypoints, dtype='float32')[0].reshape(-1) # pairss=convert_to_pairs(p) # segm=segm_imf(preds,og_img) # output=visualize(segm,pairss) return og_img inputs_image = [ gr.components.Image(type="filepath", label="Upload an XRay Image of the Pelvis"), ] outputs_image = [ gr.components.Image(type="numpy", label="Output Image") ] gr.Interface( predict_fn, inputs=inputs_image, outputs=outputs_image, title="Coordinates of the Landmarks", _api_mode=True ).launch()