import gradio as gr from fastai.vision.all import * learn = load_learner('model.pkl') labels = learn.dls.vocab def predict(img): img = PILImage.create(img) pred, pred_idx, probs = learn.predict(img) return {labels[i]: float(probs[i]) for i in range(len(labels))} title = "Gradio test" description = "Fastai classifier for AI/non AI portraits and Landscapes." examples = ['examples/port.jpg', 'examples/ia_port.jpg', 'examples/land.jpg','examples/ia_land.jpg'] gr.Interface( fn=predict, inputs=gr.Image(), outputs=gr.Label(num_top_classes=2), title=title, description=description, examples=examples, ).launch() iface.launch()