import torch from PIL import Image from transformers import AutoModel, CLIPImageProcessor import gradio as gr # Load the model model = AutoModel.from_pretrained( 'OpenGVLab/InternVL2_5-1B', torch_dtype=torch.float32, # Use float32 for CPU compatibility low_cpu_mem_usage=True, trust_remote_code=True, use_flash_attn=False # Disable Flash Attention ).eval() # Do not move to CUDA, force CPU execution # Load the image processor image_processor = CLIPImageProcessor.from_pretrained('OpenGVLab/InternVL2_5-1B') # Define the function to process the image and generate outputs def process_image(image): try: # Convert uploaded image to RGB image = image.convert('RGB') # Preprocess the image pixel_values = image_processor(images=image, return_tensors='pt').pixel_values # Run the model on CPU outputs = model(pixel_values) # Assuming the model returns embeddings or features return f"Output Shape: {outputs.last_hidden_state.shape}" except Exception as e: return f"Error: {str(e)}" # Create the Gradio interface demo = gr.Interface( fn=process_image, # Function to process the input inputs=gr.Image(type="pil"), # Accepts images as input outputs=gr.Textbox(label="Model Output"), # Displays model output title="InternViT Demo", description="Upload an image to process it using the InternViT model from OpenGVLab." ) # Launch the demo if __name__ == "__main__": demo.launch(server_name="0.0.0.0", server_port=7860)