# coding=utf-8 # author: xusong # time: 2022/8/23 16:06 """ plots table ## related demo - [](http://text-processing.com/demo/tokenize/) - [gpt-tokenizer](https://gpt-tokenizer.dev/) - [llama-tokenizer-js](https://belladoreai.github.io/llama-tokenizer-js/example-demo/build/) - [](https://huggingface.co/spaces/Xenova/the-tokenizer-playground) ## 可视化 [ The, 2, QUICK, Brown, Foxes, jumped, over, the, lazy, dog's, bone ] """ import json import pandas as pd import gradio as gr from vocab import all_tokenizers, load_tokener # 显示空格:https://blog.csdn.net/liuxiao723846/article/details/118994673 # 隐藏legend: css = """ .space-show {white-space: pre-wrap;} .cell-wrap {white-space: pre-wrap;} .category-legend {display: none !important} .statistics textarea {min-width: min(50px,100%) !important; font-size: 20px !important; font-weight: 600 !important; text-align: center !important; border: none !important;} .statistics label {text-align: center !important;} """ example_text = """Replace this text in the input field to see how tokenization works 华为智能音箱发布:华为Sound X""" # llama chatglm_6b gpt_nexo_20b baichuan baichuan_7b examples = [ # ["空格测试: 2个空格 8个空格", "llama", "chatglm_6b"], # chatglm 有blank_n, ["标点测试:,。!?;", "baichuan_7b", "llama"], ["符号测试:🦙", "baichuan_7b", "llama"], ["中文测试:🦙", "baichuan_7b", "llama"], ["数字测试:(10086 + 98) = 100184", "baichuan_7b", "llama"], ] def tokenize(text, tokenizer_type, color_num=5): """ TODO: cache tokenizer """ print(text, tokenizer_type) pos_tokens = [] tokenizer = load_tokener(tokenizer_type) encoding = tokenizer.encode(text) table = [] for idx, token_id in enumerate(encoding): decode_text = tokenizer.decode([token_id]) # 特殊字符解码后会统一变成 �,对应 "\ufffd" pos_tokens.extend([(decode_text, str(idx % color_num))]) # token "Byte": # 这是 utf-8编码吧? token = tokenizer.convert_ids_to_tokens([token_id])[0] if isinstance(token, bytes): try: token_str = token.decode("utf-8") except: token_str = token.decode("utf-8", errors="ignore") print("decode_error", token, token_str) token_bytes = token json_dumps = json.dumps(token_str) elif isinstance(token, str): token_str = token token_bytes = bytes(token_str, "utf-8") json_dumps = json.dumps(token_str) else: return # ⭐ table.append( {"TokenID": token_id, "Token": token_str, # utf-8解码后的字符串,为什么有些是 <0xE7>,表示什么?比如llama "Text": decode_text, # # "Bytes": token_bytes, # bytes类型在gradio前端页面被解码成字符串,比如 b'\xe4\xb8\xad' 仍然显示成 "中"。因此 str(token_bytes) "Bytes": str(token_bytes), # "Unicode": json_dumps # unicode, 如果是ascii码,就直接显示。如果不是ascii码,就显示unicode } ) table_df = pd.DataFrame(table) print(table) # print(table_df) return pos_tokens, table_df, len(encoding) def tokenize_pair(text, tokenizer_type_1, tokenizer_type_2): pos_tokens_1, table_df_1, token_size_1 = tokenize(text, tokenizer_type_1) pos_tokens_2, table_df_2, token_size_2 = tokenize(text, tokenizer_type_2) return pos_tokens_1, table_df_1, token_size_1, pos_tokens_2, table_df_2, token_size_2 def get_vocab_size(tokenizer_type): tokenizer = load_tokener(tokenizer_type) return tokenizer.vocab_size def test_coding(): bytes1 = b'\xe4\xb8\xad' print(bytes1) # b'\xe4\xb8\xad' with gr.Blocks(css=css) as demo: gr.HTML("""