File size: 10,233 Bytes
0ad74ed |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 |
"""Pydantic data models and other dataclasses. This is the only file that uses Optional[]
typing syntax instead of | None syntax to work with pydantic"""
from __future__ import annotations
import pathlib
import secrets
import shutil
from abc import ABC, abstractmethod
from collections.abc import Iterator
from enum import Enum, auto
from typing import (
Annotated,
Any,
Literal,
NewType,
Optional,
TypedDict,
Union,
)
from fastapi import Request
from gradio_client.documentation import document
from gradio_client.utils import traverse
from pydantic import (
BaseModel,
GetCoreSchemaHandler,
GetJsonSchemaHandler,
RootModel,
ValidationError,
)
from pydantic.json_schema import JsonSchemaValue
from pydantic_core import core_schema
from typing_extensions import NotRequired
try:
from pydantic import JsonValue
except ImportError:
JsonValue = Any
DeveloperPath = NewType("DeveloperPath", str)
UserProvidedPath = NewType("UserProvidedPath", str)
class CancelBody(BaseModel):
session_hash: str
fn_index: int
event_id: str
class SimplePredictBody(BaseModel):
data: list[Any]
session_hash: Optional[str] = None
class _StarletteRequestPydanticAnnotation:
@classmethod
def __get_pydantic_core_schema__(
cls,
_source_type: Any,
_handler: GetCoreSchemaHandler,
) -> core_schema.CoreSchema:
def validate_request(value: Any) -> Request:
if isinstance(value, Request):
return value
raise ValueError("Input must be a Starlette Request object")
return core_schema.no_info_plain_validator_function(validate_request)
@classmethod
def __get_pydantic_json_schema__(
cls, _core_schema: core_schema.CoreSchema, handler: GetJsonSchemaHandler
) -> JsonSchemaValue:
return {"type": "object", "title": "StarletteRequest"}
PydanticStarletteRequest = Annotated[Request, _StarletteRequestPydanticAnnotation]
class PredictBody(BaseModel):
session_hash: Optional[str] = None
event_id: Optional[str] = None
data: list[Any]
event_data: Optional[Any] = None
fn_index: Optional[int] = None
trigger_id: Optional[int] = None
simple_format: bool = False
batched: Optional[bool] = (
False # Whether the data is a batch of samples (i.e. called from the queue if batch=True) or a single sample (i.e. called from the UI)
)
@classmethod
def __get_pydantic_json_schema__(cls, core_schema, handler):
return {
"title": "PredictBody",
"type": "object",
"properties": {
"session_hash": {"type": "string"},
"event_id": {"type": "string"},
"data": {"type": "array", "items": {"type": "object"}},
"event_data": {"type": "object"},
"fn_index": {"type": "integer"},
"trigger_id": {"type": "integer"},
"simple_format": {"type": "boolean"},
"batched": {"type": "boolean"},
},
"required": ["data"],
}
class PredictBodyInternal(PredictBody):
"Separate class to avoid exposing PydanticStarletteRequest in the API validation"
request: Optional[PydanticStarletteRequest] = (
None # dictionary of request headers, query parameters, url, etc. (used to to pass in request for queuing)
)
class ResetBody(BaseModel):
event_id: str
class ComponentServerJSONBody(BaseModel):
session_hash: str
component_id: int
fn_name: str
data: Any
class DataWithFiles(BaseModel):
data: Any
files: list[tuple[str, bytes]]
class ComponentServerBlobBody(BaseModel):
session_hash: str
component_id: int
fn_name: str
data: DataWithFiles
class InterfaceTypes(Enum):
STANDARD = auto()
INPUT_ONLY = auto()
OUTPUT_ONLY = auto()
UNIFIED = auto()
class GradioBaseModel(ABC):
def copy_to_dir(self, dir: str | pathlib.Path) -> GradioDataModel:
if not isinstance(self, (BaseModel, RootModel)):
raise TypeError("must be used in a Pydantic model")
dir = pathlib.Path(dir)
# TODO: Making sure path is unique should be done in caller
def unique_copy(obj: dict):
data = FileData(**obj)
return data._copy_to_dir(
str(pathlib.Path(dir / secrets.token_hex(10)))
).model_dump()
return self.__class__.from_json(
x=traverse(
self.model_dump(),
unique_copy,
FileData.is_file_data,
)
)
@classmethod
@abstractmethod
def from_json(cls, x) -> GradioDataModel:
pass
class JsonData(RootModel):
"""JSON data returned from a component that should not be modified further."""
root: JsonValue
class GradioModel(GradioBaseModel, BaseModel):
@classmethod
def from_json(cls, x) -> GradioModel:
return cls(**x)
class GradioRootModel(GradioBaseModel, RootModel):
@classmethod
def from_json(cls, x) -> GradioRootModel:
return cls(root=x)
GradioDataModel = Union[GradioModel, GradioRootModel]
class FileDataDict(TypedDict):
path: str # server filepath
url: NotRequired[Optional[str]] # normalised server url
size: NotRequired[Optional[int]] # size in bytes
orig_name: NotRequired[Optional[str]] # original filename
mime_type: NotRequired[Optional[str]]
is_stream: bool
meta: NotRequired[dict]
@document()
class FileData(GradioModel):
"""
The FileData class is a subclass of the GradioModel class that represents a file object within a Gradio interface. It is used to store file data and metadata when a file is uploaded.
Attributes:
path: The server file path where the file is stored.
url: The normalized server URL pointing to the file.
size: The size of the file in bytes.
orig_name: The original filename before upload.
mime_type: The MIME type of the file.
is_stream: Indicates whether the file is a stream.
meta: Additional metadata used internally (should not be changed).
"""
path: str # server filepath
url: Optional[str] = None # normalised server url
size: Optional[int] = None # size in bytes
orig_name: Optional[str] = None # original filename
mime_type: Optional[str] = None
is_stream: bool = False
meta: dict = {"_type": "gradio.FileData"}
@property
def is_none(self) -> bool:
"""
Checks if the FileData object is empty, i.e., all attributes are None.
Returns:
bool: True if all attributes (except 'is_stream' and 'meta') are None, False otherwise.
"""
return all(
f is None
for f in [
self.path,
self.url,
self.size,
self.orig_name,
self.mime_type,
]
)
@classmethod
def from_path(cls, path: str) -> FileData:
"""
Creates a FileData object from a given file path.
Args:
path: The file path.
Returns:
FileData: An instance of FileData representing the file at the specified path.
"""
return cls(path=path)
def _copy_to_dir(self, dir: str) -> FileData:
"""
Copies the file to a specified directory and returns a new FileData object representing the copied file.
Args:
dir: The destination directory.
Returns:
FileData: A new FileData object representing the copied file.
Raises:
ValueError: If the source file path is not set.
"""
pathlib.Path(dir).mkdir(exist_ok=True)
new_obj = dict(self)
if not self.path:
raise ValueError("Source file path is not set")
new_name = shutil.copy(self.path, dir)
new_obj["path"] = new_name
return self.__class__(**new_obj)
@classmethod
def is_file_data(cls, obj: Any) -> bool:
"""
Checks if an object is a valid FileData instance.
Args:
obj: The object to check.
Returns:
bool: True if the object is a valid FileData instance, False otherwise.
"""
if isinstance(obj, dict):
try:
return not FileData(**obj).is_none
except (TypeError, ValidationError):
return False
return False
class ListFiles(GradioRootModel):
root: list[FileData]
def __getitem__(self, index):
return self.root[index]
def __iter__(self) -> Iterator[FileData]: # type: ignore[override]
return iter(self.root)
class _StaticFiles:
"""
Class to hold all static files for an app
"""
all_paths = []
def __init__(self, paths: list[str | pathlib.Path]) -> None:
self.paths = paths
self.all_paths = [pathlib.Path(p).resolve() for p in paths]
@classmethod
def clear(cls):
cls.all_paths = []
class BodyCSS(TypedDict):
body_background_fill: str
body_text_color: str
body_background_fill_dark: str
body_text_color_dark: str
class Layout(TypedDict):
id: int
children: list[int | Layout]
class BlocksConfigDict(TypedDict):
version: str
mode: str
app_id: int
dev_mode: bool
analytics_enabled: bool
components: list[dict[str, Any]]
css: str | None
connect_heartbeat: bool
js: str | None
head: str | None
title: str
space_id: str | None
enable_queue: bool
show_error: bool
show_api: bool
is_colab: bool
max_file_size: int | None
stylesheets: list[str]
theme: str | None
protocol: Literal["ws", "sse", "sse_v1", "sse_v2", "sse_v2.1", "sse_v3"]
body_css: BodyCSS
fill_height: bool
fill_width: bool
theme_hash: str
layout: NotRequired[Layout]
dependencies: NotRequired[list[dict[str, Any]]]
root: NotRequired[str | None]
username: NotRequired[str | None]
api_prefix: str
class MediaStreamChunk(TypedDict):
data: bytes
duration: float
extension: str
id: NotRequired[str]
|