File size: 9,207 Bytes
5446331 7a4858f 5446331 7a4858f 5446331 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 |
import gradio
import LlamaManager
import os
import huggingface_hub
HF_API = huggingface_hub.HfApi()
LLAMAMANAGER = LlamaManager.LlamaManager(os.environ.get("HF_KEY_2"), True)
def store_generated_data(data):
token = os.environ.get("HF_BOT")
data = f"{data}"
HF_API.comment_discussion("xqt/SyntheticMBPP2", 1, data, repo_type = "dataset", token = token)
def authenticate(secret_textbox):
global LLAMAMANAGER
password_list = os.environ.get("PASSWORD_LIST")
password_list = password_list.split(":")
api_key = ""
if secret_textbox in password_list:
api_key = os.environ.get("HF_KEY")
else:
api_key = secret_textbox
LLAMAMANAGER = LlamaManager.LlamaManager(api_key, True)
def generate_categories(categories_count, seed, temperature, top_p, frequency_penalty):
categories = LLAMAMANAGER.auto_generate_questions_categories(
count = categories_count,
seed = seed,
temperature = temperature,
top_p = top_p,
frequency_penalty = frequency_penalty
)
data = {
"type": "generate_categories",
"categories": categories,
"count": categories_count,
"seed": seed,
"temperature": temperature,
"top_p": top_p,
"frequency_penalty": frequency_penalty
}
store_generated_data(data)
return gradio.Dropdown(choices = categories, value = categories[0], label = "Select Category", interactive = True)
def generate_shots(category, shots_count, seed, temperature, top_p, frequency_penalty):
shots = LLAMAMANAGER.auto_generate_shots_for_category(category, shots_count, seed, temperature, top_p, frequency_penalty)
shots = [[shot] for shot in shots]
data = {
"type": "generate_shots",
"category": category,
"shots": shots,
"count": shots_count,
"seed": seed,
"temperature": temperature,
"top_p": top_p,
"frequency_penalty": frequency_penalty
}
store_generated_data(data)
return gradio.DataFrame(value = shots, type = "array", label = "Generated Shots", interactive = False, headers = None)
def generate_questions(questions_count, category, shots, seed, temperature, top_p, frequency_penalty):
questions = LLAMAMANAGER.auto_generate_questions_from_shots(questions_count, category, shots, seed, temperature, top_p, frequency_penalty)
questions = [[question] for question in questions]
data = {
"type": "generate_questions",
"questions": questions,
"count": questions_count,
"category": category,
"shots": shots,
"seed": seed,
"temperature": temperature,
"top_p": top_p,
"frequency_penalty": frequency_penalty
}
store_generated_data(data)
return gradio.DataFrame(value = questions, type = "array", label = "Generated Shots", interactive = False, headers = None)
with gradio.Blocks(fill_height=True) as base_app:
gradio.Markdown("# Synthetic Python Programming Data Generation βοΈ")
gradio.Markdown("# βοΈ Note: The data generated here by Llama3 and the settings used to generate it will be stored in the repository [here](https://huggingface.co/datasets/xqt/SyntheticMBPP2) for future use.")
gradio.Markdown("# βοΈ Each successful interaction is saved [here](https://huggingface.co/datasets/xqt/SyntheticMBPP2/discussions/1)")
gradio.Markdown("# βοΈ Feel free to use your own API key if the key here is rate limited. API Key is never stored in the repository.")
gradio.Markdown("# βοΈ If you want to use a passcode, please text me.")
gradio.Markdown("# Step 0: Use your own API Key/Passcode")
with gradio.Row():
with gradio.Column():
__secret_textbox = gradio.Textbox(label = "API Key/Passcode", placeholder = "Enter your API Key/Passcode here", type = "password", interactive = True)
with gradio.Column():
__passcode_authenticate = gradio.Button("Authenticate", scale = 2)
gradio.Markdown("# Step 1: How many categories do you want to generate?")
with gradio.Row(equal_height = True):
with gradio.Column(scale = 2):
__categories_count = gradio.Slider(minimum = 1, maximum = 20, step = 1, value = 10, label = "Number of Categories", interactive = True)
with gradio.Column():
__categories_generate = gradio.Button("Generate Categories", scale = 2)
with gradio.Accordion("Advanced Settings", open = False):
with gradio.Row():
with gradio.Column():
__categories_temperature = gradio.Slider(minimum = 0.1, maximum = 2.0, step = 0.01, value = 1.0, label = "Temperature", interactive = True)
__categories_top_p = gradio.Slider(minimum = 0.1, maximum = 0.99, step = 0.01, value = 0.9, label = "Top P", interactive = True)
with gradio.Column():
__categories_frequency_penalty = gradio.Slider(minimum = -2.0, maximum = 2.0, step = 0.01, value = 0.0, label = "Frequency Penalty", interactive = True)
__categories_seed = gradio.Slider(minimum = 0, maximum = 1000, step = 1, value = 123, label = "Seed", interactive = True)
gradio.Markdown("# Step 2: Select a category to generate shots for and select the number of shots to generate")
with gradio.Row():
with gradio.Column(scale = 2):
__shots_category = gradio.Dropdown(choices = [], label = "Select Category", interactive = True)
__shots_count = gradio.Slider(minimum = 2, maximum = 5, step = 1, value = 2, label = "Number of Shots", interactive = True)
with gradio.Column():
__shots_generate = gradio.Button("Generate Shots", scale = 2)
with gradio.Accordion("Advanced Settings", open = False):
with gradio.Row():
with gradio.Column():
__shots_temperature = gradio.Slider(minimum = 0.1, maximum = 2.0, step = 0.01, value = 1.0, label = "Temperature", interactive = True)
__shots_top_p = gradio.Slider(minimum = 0.1, maximum = 0.99, step = 0.01, value = 0.9, label = "Top P", interactive = True)
with gradio.Column():
__shots_frequency_penalty = gradio.Slider(minimum = -2.0, maximum = 2.0, step = 0.01, value = 0.0, label = "Frequency Penalty", interactive = True)
__shots_seed = gradio.Slider(minimum = 0, maximum = 1000, step = 1, value = 123, label = "Seed", interactive = True)
__generated_shots = gradio.DataFrame(value = [], col_count = 1, type = "array", label = "Generated Shots", interactive = False, headers = None)
gradio.Markdown("# Step 3: Generate Python Programming Questions for the generated shots")
with gradio.Row():
with gradio.Column(scale = 2):
__questions_count = gradio.Slider(minimum = 1, maximum = 30, step = 1, value = 10, label = "Number of Questions", interactive = True)
with gradio.Column():
__questions_generate = gradio.Button("Generate Questions", scale = 2)
with gradio.Accordion("Advanced Settings", open = False):
with gradio.Row():
with gradio.Column():
__questions_temperature = gradio.Slider(minimum = 0.1, maximum = 2.0, step = 0.01, value = 1.0, label = "Temperature", interactive = True)
__questions_top_p = gradio.Slider(minimum = 0.1, maximum = 0.99, step = 0.01, value = 0.9, label = "Top P", interactive = True)
with gradio.Column():
__questions_frequency_penalty = gradio.Slider(minimum = -2.0, maximum = 2.0, step = 0.01, value = 0.0, label = "Frequency Penalty", interactive = True)
__questions_seed = gradio.Slider(minimum = 0, maximum = 1000, step = 1, value = 123, label = "Seed", interactive = True)
__generated_questions = gradio.DataFrame(value = [], col_count = 1, type = "array", label = "Generated Shots", interactive = False, headers = None)
__passcode_authenticate.click(authenticate,
inputs = [__secret_textbox],
outputs = []
)
__categories_generate.click(generate_categories,
inputs = [__categories_count, __categories_seed, __categories_temperature, __categories_top_p, __categories_frequency_penalty],
outputs = [__shots_category]
)
__shots_generate.click(generate_shots,
inputs = [__shots_category, __shots_count, __shots_seed, __shots_temperature, __shots_top_p, __shots_frequency_penalty],
outputs = [__generated_shots]
)
__questions_generate.click(generate_questions,
inputs = [__questions_count, __shots_category, __generated_shots, __questions_seed, __questions_temperature, __questions_top_p, __questions_frequency_penalty],
outputs = [__generated_questions]
)
if __name__ == "__main__":
base_app.launch() |