File size: 7,781 Bytes
71139a9
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
52fdbff
71139a9
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
import typing
import os
import sam2.sam2_image_predictor
import tqdm
import requests
import torch
import numpy
import pickle

import sam2.build_sam
import sam2.automatic_mask_generator

import cv2

SAM2_MODELS = {
    "sam2_hiera_tiny": {
      "download_url": "https://dl.fbaipublicfiles.com/segment_anything_2/072824/sam2_hiera_tiny.pt",
      "model_path": ".tmp/checkpoints/sam2_hiera_tiny.pt",
      "config_file": "sam2_hiera_t.yaml"
    },
    "sam2_hiera_small": {
      "download_url": "https://dl.fbaipublicfiles.com/segment_anything_2/072824/sam2_hiera_small.pt",
      "model_path": ".tmp/checkpoints/sam2_hiera_small.pt",
      "config_file": "sam2_hiera_s.yaml"
    },
    "sam2_hiera_base_plus": {
      "download_url": "https://dl.fbaipublicfiles.com/segment_anything_2/072824/sam2_hiera_base_plus.pt",
      "model_path": ".tmp/checkpoints/sam2_hiera_base_plus.pt",
      "config_file": "sam2_hiera_b+.yaml"
    },
    "sam2_hiera_large": {
      "download_url": "https://dl.fbaipublicfiles.com/segment_anything_2/072824/sam2_hiera_large.pt",
      "model_path": ".tmp/checkpoints/sam2_hiera_large.pt",
      "config_file": "sam2_hiera_l.yaml"
    },
}
      
class SegmentAnything2Assist:
  def __init__(
    self,
    model_name: str | typing.Literal["sam2_hiera_tiny", "sam2_hiera_small", "sam2_hiera_base_plus", "sam2_hiera_large"] = "sam2_hiera_small",
    configuration: str |typing.Literal["Automatic Mask Generator", "Image"] = "Automatic Mask Generator",
    download_url: str | None = None,
    model_path: str | None = None,
    download: bool = True,
    device: str | torch.device = torch.device("cpu"),
    verbose: bool = True
  ) -> None:
    assert model_name in SAM2_MODELS.keys(), f"`model_name` should be either one of {list(SAM2_MODELS.keys())}"
    assert configuration in ["Automatic Mask Generator", "Image"]

    self.model_name = model_name
    self.configuration = configuration
    self.config_file = SAM2_MODELS[model_name]["config_file"]
    self.device = device

    self.download_url = download_url if download_url is not None else SAM2_MODELS[model_name]["download_url"]
    self.model_path = model_path if model_path is not None else SAM2_MODELS[model_name]["model_path"]
    os.makedirs(os.path.dirname(self.model_path), exist_ok = True)
    self.verbose = verbose

    if self.verbose:
      print(f"SegmentAnything2Assist::__init__::Model Name: {self.model_name}")
      print(f"SegmentAnything2Assist::__init__::Configuration: {self.configuration}")
      print(f"SegmentAnything2Assist::__init__::Download URL: {self.download_url}")
      print(f"SegmentAnything2Assist::__init__::Default Path: {self.model_path}")
      print(f"SegmentAnything2Assist::__init__::Configuration File: {self.config_file}")

    if download:
      self.download_model()

    if self.is_model_available():
      self.sam2 = sam2.build_sam.build_sam2(config_file = self.config_file, ckpt_path = self.model_path, device = self.device)
      if self.verbose:
        print("SegmentAnything2Assist::__init__::SAM2 is loaded.")
    else:
      self.sam2 = None
      if self.verbose:
        print("SegmentAnything2Assist::__init__::SAM2 is not loaded.")


  def is_model_available(self) -> bool:
    ret = os.path.exists(self.model_path)
    if self.verbose:
      print(f"SegmentAnything2Assist::is_model_available::{ret}")
    return ret

  def load_model(self) -> None:
    if self.is_model_available():
      self.sam2 = sam2.build_sam(checkpoint = self.model_path)

  def download_model(
    self, 
    force: bool = False
  ) -> None:
    if not force and self.is_model_available():
        print(f"{self.model_path} already exists. Skipping download.")
        return

    response = requests.get(self.download_url, stream=True)
    total_size = int(response.headers.get('content-length', 0))

    with open(self.model_path, 'wb') as file, tqdm.tqdm(total = total_size, unit = 'B', unit_scale = True) as progress_bar:
        for data in response.iter_content(chunk_size = 1024):
            file.write(data)
            progress_bar.update(len(data))

  def generate_automatic_masks(
    self,
    image,
    points_per_side = 32,
    points_per_batch = 32,
    pred_iou_thresh = 0.8,
    stability_score_thresh = 0.95,
    stability_score_offset = 1.0,
    mask_threshold = 0.0,
    box_nms_thresh = 0.7,
    crop_n_layers = 0,
    crop_nms_thresh = 0.7,
    crop_overlay_ratio = 512 / 1500,
    crop_n_points_downscale_factor = 1,
    min_mask_region_area = 0,
    use_m2m = False,
    multimask_output = True
  ):
    if self.sam2 is None:
      print("SegmentAnything2Assist::generate_automatic_masks::SAM2 is not loaded.")
      return None
    
    generator = sam2.automatic_mask_generator.SAM2AutomaticMaskGenerator(
      model = self.sam2,
      points_per_side = points_per_side,
      points_per_batch = points_per_batch,
      pred_iou_thresh = pred_iou_thresh,
      stability_score_thresh = stability_score_thresh,
      stability_score_offset = stability_score_offset,
      mask_threshold = mask_threshold,
      box_nms_thresh = box_nms_thresh,
      crop_n_layers = crop_n_layers,
      crop_nms_thresh = crop_nms_thresh,
      crop_overlay_ratio = crop_overlay_ratio,
      crop_n_points_downscale_factor = crop_n_points_downscale_factor,
      min_mask_region_area = min_mask_region_area,
      use_m2m = use_m2m,
      multimask_output = multimask_output
      )
    masks = generator.generate(image)
    
    pickle.dump(masks, open(".tmp/auto_masks.pkl", "wb"))
    
    return masks
  
  def generate_masks_from_image(
    self,
    image,
    point_coords,
    point_labels,
    box,
    mask_threshold = 0.0,
    max_hole_area = 0.0,
    max_sprinkle_area = 0.0
  ):
    generator = sam2.sam2_image_predictor.SAM2ImagePredictor(
      self.sam2,
      mask_threshold = mask_threshold,
      max_hole_area = max_hole_area,
      max_sprinkle_area = max_sprinkle_area
    )
    generator.set_image(image)
    
    masks_chw, mask_iou, mask_low_logits = generator.predict(
      point_coords = numpy.array(point_coords) if point_coords is not None else None,
      point_labels = numpy.array(point_labels) if point_labels is not None else None,
      box = numpy.array(box) if box is not None else None,
      multimask_output = False
    )
    
    return masks_chw, mask_iou
  
  def apply_mask_to_image(
    self,
    image,
    mask
  ):
    mask = numpy.array(mask)
    mask = numpy.where(mask > 0, 255, 0).astype(numpy.uint8)
    segment = cv2.bitwise_and(image, image, mask = mask)
    return mask, segment

  def apply_auto_mask_to_image(
    self,
    image,
    auto_list
  ):   
    if not os.path.exists(".tmp/auto_masks.pkl"):
      return

    masks = pickle.load(open(".tmp/auto_masks.pkl", "rb"))
      
    image_with_bounding_boxes = image.copy()
    all_masks = None
    for _ in auto_list:
      mask = numpy.array(masks[_]['segmentation'])
      mask = numpy.where(mask == True, 255, 0).astype(numpy.uint8)
      bbox = masks[_]["bbox"]
      if all_masks is None:
        all_masks = mask
      else:
        all_masks = cv2.bitwise_or(all_masks, mask)
      
      random_color = numpy.random.randint(0, 255, size = 3)
      image_with_bounding_boxes = cv2.rectangle(image_with_bounding_boxes, (int(bbox[0]), int(bbox[1])), (int(bbox[0] + bbox[2]), int(bbox[1] + bbox[3])), random_color.tolist(), 2)
      image_with_bounding_boxes = cv2.putText(image_with_bounding_boxes, f"{_ + 1}", (int(bbox[0]), int(bbox[1]) - 10), cv2.FONT_HERSHEY_SIMPLEX, 0.5, random_color.tolist(), 2)
    
    all_masks = numpy.where(all_masks > 0, 255, 0).astype(numpy.uint8)
    image_with_segments = cv2.bitwise_and(image, image, mask = all_masks)
    return image_with_bounding_boxes, all_masks, image_with_segments