Spaces:
Build error
Build error
File size: 15,700 Bytes
71139a9 00f618e 71139a9 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 |
import gradio
import gradio_image_annotation
import gradio_imageslider
import spaces
import torch
import src.SegmentAnything2Assist as SegmentAnything2Assist
example_image_annotation = {
"image": "assets/cars.jpg",
"boxes": [{'label': '+', 'color': (0, 255, 0), 'xmin': 886, 'ymin': 551, 'xmax': 886, 'ymax': 551}, {'label': '-', 'color': (255, 0, 0), 'xmin': 1239, 'ymin': 576, 'xmax': 1239, 'ymax': 576}, {'label': '-', 'color': (255, 0, 0), 'xmin': 610, 'ymin': 574, 'xmax': 610, 'ymax': 574}, {'label': '', 'color': (0, 0, 255), 'xmin': 254, 'ymin': 466, 'xmax': 1347, 'ymax': 1047}]
}
VERBOSE = True
segment_anything2assist = SegmentAnything2Assist.SegmentAnything2Assist(model_name = "sam2_hiera_tiny", device = torch.device("cuda"))
__image_point_coords = None
__image_point_labels = None
__image_box = None
__current_mask = None
__current_segment = None
def __change_base_model(model_name, device):
global segment_anything2assist
try:
segment_anything2assist = SegmentAnything2Assist.SegmentAnything2Assist(model_name = model_name, device = torch.device(device))
gradio.Info(f"Model changed to {model_name} on {device}", duration = 5)
except:
gradio.Error(f"Model could not be changed", duration = 5)
def __post_process_annotator_inputs(value):
global __image_point_coords, __image_point_labels, __image_box
global __current_mask, __current_segment
if VERBOSE:
print("SegmentAnything2AssistApp::____post_process_annotator_inputs::Called.")
__current_mask, __current_segment = None, None
new_boxes = []
__image_point_coords = []
__image_point_labels = []
__image_box = []
b_has_box = False
for box in value["boxes"]:
if box['label'] == '':
if not b_has_box:
new_box = box.copy()
new_box['color'] = (0, 0, 255)
new_boxes.append(new_box)
b_has_box = True
__image_box = [
box['xmin'],
box['ymin'],
box['xmax'],
box['ymax']
]
elif box['label'] == '+' or box['label'] == '-':
new_box = box.copy()
new_box['color'] = (0, 255, 0) if box['label'] == '+' else (255, 0, 0)
new_box['xmin'] = int((box['xmin'] + box['xmax']) / 2)
new_box['ymin'] = int((box['ymin'] + box['ymax']) / 2)
new_box['xmax'] = new_box['xmin']
new_box['ymax'] = new_box['ymin']
new_boxes.append(new_box)
__image_point_coords.append([new_box['xmin'], new_box['ymin']])
__image_point_labels.append(1 if box['label'] == '+' else 0)
if len(__image_box) == 0:
__image_box = None
if len(__image_point_coords) == 0:
__image_point_coords = None
if len(__image_point_labels) == 0:
__image_point_labels = None
if VERBOSE:
print("SegmentAnything2AssistApp::____post_process_annotator_inputs::Done.")
@spaces.GPU(duration = 60)
def __generate_mask(value, mask_threshold, max_hole_area, max_sprinkle_area, image_output_mode):
global __current_mask, __current_segment
global __image_point_coords, __image_point_labels, __image_box
global segment_anything2assist
# Force post processing of annotated image
__post_process_annotator_inputs(value)
if VERBOSE:
print("SegmentAnything2AssistApp::__generate_mask::Called.")
mask_chw, mask_iou = segment_anything2assist.generate_masks_from_image(
value["image"],
__image_point_coords,
__image_point_labels,
__image_box,
mask_threshold,
max_hole_area,
max_sprinkle_area
)
if VERBOSE:
print("SegmentAnything2AssistApp::__generate_mask::Masks generated.")
__current_mask, __current_segment = segment_anything2assist.apply_mask_to_image(value["image"], mask_chw[0])
if VERBOSE:
print("SegmentAnything2AssistApp::__generate_mask::Masks and Segments created.")
if image_output_mode == "Mask":
return [value["image"], __current_mask]
elif image_output_mode == "Segment":
return [value["image"], __current_segment]
else:
gradio.Warning("This is an issue, please report the problem!", duration=5)
return gradio_imageslider.ImageSlider(render = True)
def __change_output_mode(image_input, radio):
global __current_mask, __current_segment
global __image_point_coords, __image_point_labels, __image_box
if VERBOSE:
print("SegmentAnything2AssistApp::__generate_mask::Called.")
if __current_mask is None or __current_segment is None:
gradio.Warning("Configuration was changed, generate the mask again", duration=5)
return gradio_imageslider.ImageSlider(render = True)
if radio == "Mask":
return [image_input["image"], __current_mask]
elif radio == "Segment":
return [image_input["image"], __current_segment]
else:
gradio.Warning("This is an issue, please report the problem!", duration=5)
return gradio_imageslider.ImageSlider(render = True)
def __generate_multi_mask_output(image, auto_list, auto_mode, auto_bbox_mode):
global segment_anything2assist
image_with_bbox, mask, segment = segment_anything2assist.apply_auto_mask_to_image(image, [int(i) - 1 for i in auto_list])
output_1 = image_with_bbox if auto_bbox_mode else image
output_2 = mask if auto_mode == "Mask" else segment
return [output_1, output_2]
@spaces.GPU(duration = 60)
def __generate_auto_mask(
image,
points_per_side,
points_per_batch,
pred_iou_thresh,
stability_score_thresh,
stability_score_offset,
mask_threshold,
box_nms_thresh,
crop_n_layers,
crop_nms_thresh,
crop_overlay_ratio,
crop_n_points_downscale_factor,
min_mask_region_area,
use_m2m,
multimask_output,
output_mode
):
global segment_anything2assist
if VERBOSE:
print("SegmentAnything2AssistApp::__generate_auto_mask::Called.")
__auto_masks = segment_anything2assist.generate_automatic_masks(
image,
points_per_side,
points_per_batch,
pred_iou_thresh,
stability_score_thresh,
stability_score_offset,
mask_threshold,
box_nms_thresh,
crop_n_layers,
crop_nms_thresh,
crop_overlay_ratio,
crop_n_points_downscale_factor,
min_mask_region_area,
use_m2m,
multimask_output
)
if len(__auto_masks) == 0:
gradio.Warning("No masks generated, please tweak the advanced parameters.", duration = 5)
return gradio_imageslider.ImageSlider(), \
gradio.CheckboxGroup([], value = [], label = "Mask List", interactive = False), \
gradio.Checkbox(value = False, label = "Show Bounding Box", interactive = False)
else:
choices = [str(i) for i in range(len(__auto_masks))]
returning_image = __generate_multi_mask_output(image, ["0"], output_mode, False)
return returning_image, \
gradio.CheckboxGroup(choices, value = ["0"], label = "Mask List", interactive = True), \
gradio.Checkbox(value = False, label = "Show Bounding Box", interactive = True)
with gradio.Blocks() as base_app:
gradio.Markdown("# SegmentAnything2Assist")
with gradio.Row():
with gradio.Column():
base_model_choice = gradio.Dropdown(
['sam2_hiera_large', 'sam2_hiera_small', 'sam2_hiera_base_plus','sam2_hiera_tiny'],
value = 'sam2_hiera_tiny',
label = "Model Choice"
)
with gradio.Column():
base_gpu_choice = gradio.Dropdown(
['cpu', 'cuda'],
value = 'cuda',
label = "Device Choice"
)
base_model_choice.change(__change_base_model, inputs = [base_model_choice, base_gpu_choice])
base_gpu_choice.change(__change_base_model, inputs = [base_model_choice, base_gpu_choice])
with gradio.Tab(label = "Image Segmentation", id = "image_tab") as image_tab:
gradio.Markdown("Image Segmentation", render = True)
with gradio.Column():
with gradio.Accordion("Image Annotation Documentation", open = False):
gradio.Markdown("""
Image annotation allows you to mark specific regions of an image with labels.
In this app, you can annotate an image by drawing boxes and assigning labels to them.
The labels can be either '+' or '-'.
To annotate an image, simply click and drag to draw a box around the desired region.
You can add multiple boxes with different labels.
Once you have annotated the image, click the 'Generate Mask' button to generate a mask based on the annotations.
The mask can be either a binary mask or a segmented mask, depending on the selected output mode.
You can switch between the output modes using the radio buttons.
If you make any changes to the annotations or the output mode, you need to regenerate the mask by clicking the button again.
Note that the advanced options allow you to adjust the SAM mask threshold, maximum hole area, and maximum sprinkle area.
These options control the sensitivity and accuracy of the segmentation process.
Experiment with different settings to achieve the desired results.
""")
image_input = gradio_image_annotation.image_annotator(example_image_annotation)
with gradio.Accordion("Advanced Options", open = False):
image_generate_SAM_mask_threshold = gradio.Slider(0.0, 1.0, 0.0, label = "SAM Mask Threshold")
image_generate_SAM_max_hole_area = gradio.Slider(0, 1000, 0, label = "SAM Max Hole Area")
image_generate_SAM_max_sprinkle_area = gradio.Slider(0, 1000, 0, label = "SAM Max Sprinkle Area")
image_generate_mask_button = gradio.Button("Generate Mask")
image_output = gradio_imageslider.ImageSlider()
image_output_mode = gradio.Radio(["Segment", "Mask"], value = "Segment", label = "Output Mode")
image_input.change(__post_process_annotator_inputs, inputs = [image_input])
image_generate_mask_button.click(__generate_mask, inputs = [
image_input,
image_generate_SAM_mask_threshold,
image_generate_SAM_max_hole_area,
image_generate_SAM_max_sprinkle_area,
image_output_mode
],
outputs = [image_output])
image_output_mode.change(__change_output_mode, inputs = [image_input, image_output_mode], outputs = [image_output])
with gradio.Tab(label = "Auto Segmentation", id = "auto_tab"):
gradio.Markdown("Auto Segmentation", render = True)
with gradio.Column():
with gradio.Accordion("Auto Annotation Documentation", open = False):
gradio.Markdown("""
""")
auto_input = gradio.Image("assets/cars.jpg")
with gradio.Accordion("Advanced Options", open = False):
auto_generate_SAM_points_per_side = gradio.Slider(1, 64, 32, 1, label = "Points Per Side", interactive = True)
auto_generate_SAM_points_per_batch = gradio.Slider(1, 64, 32, 1, label = "Points Per Batch", interactive = True)
auto_generate_SAM_pred_iou_thresh = gradio.Slider(0.0, 1.0, 0.8, 1, label = "Pred IOU Threshold", interactive = True)
auto_generate_SAM_stability_score_thresh = gradio.Slider(0.0, 1.0, 0.95, label = "Stability Score Threshold", interactive = True)
auto_generate_SAM_stability_score_offset = gradio.Slider(0.0, 1.0, 1.0, label = "Stability Score Offset", interactive = True)
auto_generate_SAM_mask_threshold = gradio.Slider(0.0, 1.0, 0.0, label = "Mask Threshold", interactive = True)
auto_generate_SAM_box_nms_thresh = gradio.Slider(0.0, 1.0, 0.7, label = "Box NMS Threshold", interactive = True)
auto_generate_SAM_crop_n_layers = gradio.Slider(0, 10, 0, 1, label = "Crop N Layers", interactive = True)
auto_generate_SAM_crop_nms_thresh = gradio.Slider(0.0, 1.0, 0.7, label = "Crop NMS Threshold", interactive = True)
auto_generate_SAM_crop_overlay_ratio = gradio.Slider(0.0, 1.0, 512 / 1500, label = "Crop Overlay Ratio", interactive = True)
auto_generate_SAM_crop_n_points_downscale_factor = gradio.Slider(1, 10, 1, label = "Crop N Points Downscale Factor", interactive = True)
auto_generate_SAM_min_mask_region_area = gradio.Slider(0, 1000, 0, label = "Min Mask Region Area", interactive = True)
auto_generate_SAM_use_m2m = gradio.Checkbox(label = "Use M2M", interactive = True)
auto_generate_SAM_multimask_output = gradio.Checkbox(value = True, label = "Multi Mask Output", interactive = True)
auto_generate_button = gradio.Button("Generate Auto Mask")
with gradio.Row():
with gradio.Column():
auto_output_mode = gradio.Radio(["Segment", "Mask"], value = "Segment", label = "Output Mode", interactive = True)
auto_output_list = gradio.CheckboxGroup([], value = [], label = "Mask List", interactive = False)
auto_output_bbox = gradio.Checkbox(value = False, label = "Show Bounding Box", interactive = False)
with gradio.Column(scale = 3):
auto_output = gradio_imageslider.ImageSlider()
auto_generate_button.click(
__generate_auto_mask,
inputs = [
auto_input,
auto_generate_SAM_points_per_side,
auto_generate_SAM_points_per_batch,
auto_generate_SAM_pred_iou_thresh,
auto_generate_SAM_stability_score_thresh,
auto_generate_SAM_stability_score_offset,
auto_generate_SAM_mask_threshold,
auto_generate_SAM_box_nms_thresh,
auto_generate_SAM_crop_n_layers,
auto_generate_SAM_crop_nms_thresh,
auto_generate_SAM_crop_overlay_ratio,
auto_generate_SAM_crop_n_points_downscale_factor,
auto_generate_SAM_min_mask_region_area,
auto_generate_SAM_use_m2m,
auto_generate_SAM_multimask_output,
auto_output_mode
],
outputs = [
auto_output,
auto_output_list,
auto_output_bbox
]
)
auto_output_list.change(__generate_multi_mask_output, inputs = [auto_input, auto_output_list, auto_output_mode, auto_output_bbox], outputs = [auto_output])
auto_output_bbox.change(__generate_multi_mask_output, inputs = [auto_input, auto_output_list, auto_output_mode, auto_output_bbox], outputs = [auto_output])
auto_output_mode.change(__generate_multi_mask_output, inputs = [auto_input, auto_output_list, auto_output_mode, auto_output_bbox], outputs = [auto_output])
if __name__ == "__main__":
base_app.launch()
|