import json import os import time import random import torch import gc import re import math import gradio as gr import numpy as np import boto3 import logging from botocore.exceptions import NoCredentialsError from collections import defaultdict from transformers import AutoConfig, AutoModelForCausalLM, AutoTokenizer os.environ["TOKENIZERS_PARALLELISM"] = "0" os.environ["PYTORCH_CUDA_ALLOC_CONF"] = "expandable_segments:True" def download_xmad_file(): s3 = boto3.client('s3', aws_access_key_id=os.getenv('AWS_ACCESS_KEY_ID'), aws_secret_access_key=os.getenv('AWS_SECRET_ACCESS_KEY')) # Create the .codebooks directory if it doesn't exist codebooks_dir = '.codebooks' os.makedirs(codebooks_dir, exist_ok=True) temp_file_path = os.path.join(codebooks_dir, 'llama-3-8b-instruct_1bit.xmad') try: # Download the file to the .codebooks directory s3.download_file('xmad-quantized-models', 'llama-3-8b-instruct_1bit.xmad', temp_file_path) print("Download Successful") # Restrict permissions on the .codebooks directory os.chmod(codebooks_dir, 0o700) except NoCredentialsError: print("Credentials not available") download_xmad_file() def b2mb(x): """ Convert bytes to megabytes. """ return int(x / 2**20) class TorchTracemalloc: """ A context manager that clears GPU memory and returns GPU peak memory & GPU memory usage. """ track_memory_consumption = [] def __enter__(self): gc.collect() torch.cuda.empty_cache() torch.cuda.reset_peak_memory_stats() self.begin = torch.cuda.memory_allocated() return self def __exit__(self, *exc): torch.cuda.synchronize() self.end = torch.cuda.memory_allocated() self.peak = torch.cuda.max_memory_allocated() self.used = b2mb(self.end - self.begin) self.peaked = b2mb(self.peak - self.begin) TorchTracemalloc.track_memory_consumption.append(self.peaked) def clear_gpu_memory(): torch.cuda.empty_cache() gc.collect() print("GPU memory cleared.") def format_response(dialog, response): question = next((turn['content'] for turn in dialog if turn['role'] == 'user'), 'No question found') return {"question": question, "answer": response} # Global variables to store the model and tokenizer global_model = None global_tokenizer = None def load_model_and_tokenizer(model_name, dtype, kv_bits): global global_model, global_tokenizer tokenizer = AutoTokenizer.from_pretrained(model_name) special_tokens = {"pad_token": ""} tokenizer.add_special_tokens(special_tokens) config = AutoConfig.from_pretrained(model_name) if kv_bits != "unquantized": quantizer_path = f".codebooks/{model_name.split('/')[-1]}_{kv_bits}bit.xmad" setattr(config, "quantizer_path", quantizer_path) if dtype == "bf16": dtype = torch.bfloat16 elif dtype == "fp16": dtype = torch.float16 elif dtype == "fp32": dtype = torch.float32 model = AutoModelForCausalLM.from_pretrained(model_name, config=config, torch_dtype=dtype, device_map="auto") print(f"Quantizer path in model config: {model.config.quantizer_path}") logging.info(f"Quantizer path in model config: {model.config.quantizer_path}") if len(tokenizer) > model.get_input_embeddings().weight.shape[0]: model.resize_token_embeddings(len(tokenizer)) tokenizer.padding_side = "left" model.config.pad_token_id = tokenizer.pad_token_id global_model = model global_tokenizer = tokenizer # def load_questions(prompts_path, custom_questions): # with open(prompts_path, "r") as file: # dialogs = json.load(file) # selected_dialogs = [] # if custom_questions: # for question in custom_questions: # if question.strip(): # custom_dialog = [{"role": "user", "content": question}] # selected_dialogs.append(custom_dialog) # num_questions = max(60 - len(selected_dialogs), 0) # random.shuffle(dialogs) # selected_dialogs.extend(dialogs[:num_questions]) # return selected_dialogs def load_questions(prompts_path, custom_questions): selected_dialogs = [] if custom_questions: for question in custom_questions: if question.strip(): custom_dialog = [{"role": "user", "content": question}] selected_dialogs.append(custom_dialog) return selected_dialogs def markdown_to_plain_text(markdown_text): # Convert markdown bold (**) to plain text uppercase markdown_text = re.sub(r'\*\*(.*?)\*\*', r'\1'.upper(), markdown_text) # Convert markdown italics (*) to plain text markdown_text = re.sub(r'\*(.*?)\*', r'\1', markdown_text) # Remove markdown headers (###) markdown_text = re.sub(r'### ', '', markdown_text) # Convert markdown lists (- or *) markdown_text = re.sub(r'^\s*[-*]\s+', '', markdown_text, flags=re.MULTILINE) # Remove remaining markdown formatting markdown_text = re.sub(r'[`~>]', '', markdown_text) return markdown_text def infer(model_name, dialogs, num_new_tokens, temperature, dtype, kv_bits, progress=gr.Progress()): print("Starting inference...") global global_model, global_tokenizer model = global_model tokenizer = global_tokenizer batch_inputs = [ tokenizer.apply_chat_template(dialog, tokenize=False, add_generation_prompt=True) for dialog in dialogs ] responses = [] start_time = time.time() batch_size = min(100, len(dialogs)) # Adjust batch size based on GPU capacity and number of dialogs num_dialogs = len(dialogs) total_time = 0 # Initialize total_time total_tokens = 0 total_ttft = 0 memory_avg = [] tokens_per_sec_avg = [] time_to_first_token_avg = [] responses_by_batch_size = defaultdict(list) batch_generation_time = 0 total_generation_time = 0 terminators = [ tokenizer.eos_token_id, tokenizer.convert_tokens_to_ids("<|eot_id|>"), ] with TorchTracemalloc() as tt: for i in range(0, num_dialogs, batch_size): batch = batch_inputs[i : i + batch_size] try: encoded_inputs = tokenizer( batch, padding=True, truncation=False, return_tensors="pt", ) input_ids = encoded_inputs["input_ids"].to(model.device) attention_mask = encoded_inputs["attention_mask"].to(model.device) torch.cuda.synchronize() start_time = time.perf_counter() with torch.no_grad(): output_tokens = model.generate( input_ids, attention_mask=attention_mask, max_new_tokens=num_new_tokens, num_return_sequences=1, do_sample=True, temperature=temperature, pad_token_id=tokenizer.pad_token_id, eos_token_id=terminators, ) torch.cuda.synchronize() end_time = time.perf_counter() batch_time = end_time - start_time total_time += batch_time batch_generation_time += batch_time total_generation_time += batch_time total_tokens += output_tokens.numel() if i == 0: total_ttft = batch_time decoded_outputs = tokenizer.batch_decode(output_tokens, skip_special_tokens=True) for j, response in enumerate(decoded_outputs): original_dialog = dialogs[i + j] formatted_responses = format_response(original_dialog, response) responses.append(formatted_responses) # formatted_responses = "\n\n---\n\n".join([f"**Question**: {res['question']}\n\n**Answer**: {res['answer'][4:]}" for res in responses]) formatted_responses = "\n\n====================\n\n".join([f"**Question**:\t{res['question']}\n\n**Answer**: {res['answer'][4+len(res['question'])+11:]}" for res in responses]) plain_text_responses = markdown_to_plain_text(formatted_responses) yield plain_text_responses progress(i, desc="Processing batches") torch.cuda.empty_cache() except Exception as e: print(f"Error processing batch {i//batch_size + 1}: {str(e)}") continue elapsed_time = total_time tokens_per_second = total_tokens / total_time if total_time > 0 else 0 total_memory_consumption = np.sum(TorchTracemalloc.track_memory_consumption) avg_memory_consumption = total_memory_consumption / num_dialogs ttft = total_ttft / batch_size if batch_size > 0 else 0 print(f"Inference completed in {elapsed_time:.2f} seconds.") yield { "Time Taken (seconds)": elapsed_time, "Tokens per Second": tokens_per_second, "Time to First Token (seconds)": ttft, "Formatted Responses": plain_text_responses, "Memory Consumption per Question (MB)": avg_memory_consumption, "Total Memory Consumption (MB)": total_memory_consumption, "Num Dialogs": num_dialogs } # Demo function def demo(num_new_tokens, temperature, custom_questions_text, kv_bits=1, progress=gr.Progress()): custom_questions = custom_questions_text.split("\n") print("Loading questions...") dialogs = load_questions("chats_sys_none.json", custom_questions) print(f"{len(dialogs)} questions loaded. Starting inference...") result_gen = infer("NousResearch/Meta-Llama-3-8B-Instruct", dialogs, num_new_tokens, temperature, "fp16", kv_bits, progress=progress) formatted_responses = "" num_dialogs = 0 for result in result_gen: if isinstance(result, str): formatted_responses = result yield None, None, None, None, None, None, None, formatted_responses else: time_taken = result["Time Taken (seconds)"] tokens_per_second = result["Tokens per Second"] ttft = result["Time to First Token (seconds)"] avg_memory_consumption = result["Memory Consumption per Question (MB)"] total_memory_consumption = result["Total Memory Consumption (MB)"] num_dialogs = result["Num Dialogs"] formatted_responses = result["Formatted Responses"] yield time_taken, tokens_per_second, ttft, avg_memory_consumption, num_dialogs, total_memory_consumption, formatted_responses # clear_gpu_memory() # Load JSON data with open("chats_sys_none.json", "r") as file: json_data = json.load(file) # Load 60 random questions into the input area by default def load_default_questions(): random.shuffle(json_data) default_questions = [dialog[0]['content'] for dialog in json_data[:60] if 'content' in dialog[0]] return "\n".join(default_questions) # Load default questions on button click def load_questions_action(): return load_default_questions() # Gradio interface css = """ body, html { height: 100vh; margin: 0; } .gradio-container { height: 100vh; } #main-row { height: 100%; display: flex; } #control-panel{ height: 100%; box-sizing: border-box; display: flex; flex-direction: column; overflow: hidden; flex: 1; } #control-panel, #formatted-responses-container { height: 100%; box-sizing: border-box; display: flex; flex-direction: column; overflow: hidden; flex: 1; } #control-panel { flex: 1; padding-bottom: 1vh; /* Add some padding to the bottom */ } #custom-questions-text { height: 30vh; /* Fixed height for custom questions text */ overflow-y: auto; } #metrics-panel { display: flex; flex-wrap: wrap; flex-shrink: 0; height: auto; /* Let the panel size adjust based on its content */ } #metrics-panel .metric { flex: 1 1 48%; min-width: 10vw; box-sizing: border-box; } #buttons-container { display: flex; justify-content: space-between; height: 6vh; /* Fixed height for buttons container */ flex-shrink: 0; margin-bottom: 1vh; /* Add margin to prevent cutting off */ } """ with gr.Blocks(css=css) as app: with gr.Row(elem_id="main-row", equal_height=True): with gr.Column(elem_id="control-panel", scale=1): num_new_tokens = gr.Slider(label="Number of New Tokens", minimum=128, maximum=2048, step=128, value=512) temperature = gr.Slider(label="Temperature", minimum=0.0, maximum=1.0, step=0.1, value=0.4) custom_questions_text = gr.Textbox( label="Custom Questions", placeholder="Type your custom questions here, one per line... \nOr press the \"Load Default Questions\" button to load 60 random default questions. \nAdd a question by adding a new line, or delete lines to decrease the number of questions.", autoscroll=False, container=False, lines=5, elem_id="custom-questions-text" ) with gr.Row(elem_id="metrics-panel"): time_taken = gr.Number(label="Time Taken (seconds)", interactive=False, elem_classes=["metric"]) tokens_per_second = gr.Number(label="Tokens per Second", interactive=False, elem_classes=["metric"]) ttft = gr.Number(label="Time to First Token (seconds)", interactive=False, elem_classes=["metric"]) total_memory_consumption = gr.Number(label="Memory Consumption (MB)", interactive=False, elem_classes=["metric"]) num_dialogs = gr.Number(label="Dialogs Processed", interactive=False, elem_classes=["metric"]) avg_memory_consumption = gr.Number(label="Mem. Consumption per Question (MB)", interactive=False, elem_classes=["metric"]) with gr.Row(elem_id="buttons-container"): load_questions_btn = gr.Button("Load Default Questions") demo_btn = gr.Button("Run Inference", elem_id="run-inference-btn", variant="primary") formatted_responses = gr.Textbox( label="Formatted Responses", elem_id="formatted-responses", value="No responses yet. Run the inference to see results.", lines=37, container=False, autoscroll=False, show_copy_button=True ) load_questions_btn.click(fn=load_questions_action, inputs=[], outputs=custom_questions_text) demo_btn.click(demo, inputs=[num_new_tokens, temperature, custom_questions_text], outputs=[time_taken, tokens_per_second, ttft, avg_memory_consumption, num_dialogs, total_memory_consumption, formatted_responses]) if __name__ == "__main__": print("Loading model and tokenizer on startup...") load_model_and_tokenizer("NousResearch/Meta-Llama-3-8B-Instruct", "fp16", "1") print("Model and tokenizer loaded. Starting Gradio interface...") username = os.getenv("AUTH_USERNAME") password = os.getenv("AUTH_PASSWORD") app.launch(auth=(username, password))