import json import math import os import time from argparse import ArgumentParser from collections import defaultdict import matplotlib.pyplot as plt import numpy as np import torch from transformers import AutoConfig, AutoModelForCausalLM, AutoTokenizer os.environ["TOKENIZERS_PARALLELISM"] = "0" os.environ["PYTORCH_CUDA_ALLOC_CONF"] = "expandable_segments:True" # os.environ["HF_HOME"] = "/scratch/ow5/huggingface_cache" class TorchTracemalloc: track_memory_consumption = [] def __enter__(self): self.begin = torch.cuda.memory_allocated() torch.cuda.reset_max_memory_allocated() return self def __exit__(self, *exc): peak = torch.cuda.max_memory_allocated() peaked = (peak - self.begin) // 1024**2 TorchTracemalloc.track_memory_consumption.append(peaked) def save_bar_chart(title, x, y, ylabel, xlabel, output_path): try: plt.style.use("ggplot") width = 0.4 xs = np.arange(len(x)) plt.figure(figsize=(10, 6)) plt.bar(xs, height=y, width=width, color="skyblue") plt.title(title) plt.xticks(xs, x) plt.xlabel(xlabel) plt.ylabel(ylabel) plt.savefig(output_path) except Exception as e: print(f"Error saving chart {title}: {str(e)}") finally: plt.close() def format_response(dialog, response): formatted_dialog = dialog.copy() formatted_dialog.append({"role": "assistant", "content": response}) return formatted_dialog parser = ArgumentParser("chat_with_llama") parser.add_argument( "--llama", type=str, default="3-instruct", choices=["2", "3-instruct"] ) # parser.add_argument("--prompts_path", type=str, default="chats_sys_none.json") parser.add_argument("--prompts_path", type=str, default="chats.json") parser.add_argument("--model_size", type=int, default=8, choices=[7, 8, 13]) parser.add_argument("--num_new_tokens", type=int, default=512) parser.add_argument( "--temperature", type=float, default=0.4, help="Temperature for sampling" ) parser.add_argument("--window_length", type=int, default=32) parser.add_argument("--kv_bits", type=int, default=1) parser.add_argument("--output_path", type=str, default="./output") parser.add_argument( "--dtype", type=str, default="fp16", choices=["fp16", "fp32", "bf16"] ) args = parser.parse_args() bits = args.kv_bits try: if args.llama == 2: model_name = "NousResearch/Llama-2-7b-hf" else: model_name = "NousResearch/Meta-Llama-3-8B-Instruct" tokenizer = AutoTokenizer.from_pretrained(model_name) special_tokens = {"pad_token": ""} tokenizer.add_special_tokens(special_tokens) config = AutoConfig.from_pretrained(model_name) if isinstance(bits, int): if args.llama == 2: setattr( config, "quantizer_path", f"codebooks/llama-2-7b_{bits}bit.xmad", ) print(f"Using {bits}-bit quantization for Llama-2-7b-base") else: setattr( config, "quantizer_path", f"codebooks/llama-3-8b-instruct_{bits}bit.xmad", ) print(f"Using {bits}-bit quantization for Llama-3-8b-Instruct") if isinstance(args.window_length, int): setattr(config, "window_length", args.window_length) if args.dtype == "bf16": dtype = torch.bfloat16 elif args.dtype == "fp16": dtype = torch.float16 elif args.dtype == "fp32": dtype = torch.float32 # ! When OOM with cuda:0 at batch_size=120, "auto" does NOT help with offloading memory model = AutoModelForCausalLM.from_pretrained( model_name, config=config, torch_dtype=dtype, device_map="cuda:0" ) if len(tokenizer) > model.get_input_embeddings().weight.shape[0]: print( "WARNING: Resizing the embedding matrix to match the tokenizer vocab size." ) model.resize_token_embeddings(len(tokenizer)) tokenizer.padding_side = "left" model.config.pad_token_id = tokenizer.pad_token_id with open(args.prompts_path, "r") as file: dialogs = json.load(file) num_dialogs = len(dialogs) print(f"Loaded {num_dialogs} dialogues...") batch_inputs = [ tokenizer.apply_chat_template( dialog, tokenize=False, add_generation_prompt=True ) for dialog in dialogs ] terminators = [ tokenizer.eos_token_id, tokenizer.convert_tokens_to_ids("<|eot_id|>"), ] batch_sizes = [60] memory_avg = [] tokens_per_sec_avg = [] time_to_first_token_avg = [] responses_by_batch_size = defaultdict(list) # !CHECK: Total generation time summed across all batches total_generation_time = 0 os.makedirs(args.output_path, exist_ok=True) for batch_size in batch_sizes: print(f"\nProcessing with batch size: {batch_size}") actual_batch_size = min(batch_size, num_dialogs) total_time = 0 total_tokens = 0 total_ttft = 0 num_batches = math.ceil(num_dialogs / actual_batch_size) # ! CHECK: Gen time for each batch batch_generation_time = 0 with TorchTracemalloc() as tt: for i in range(0, num_dialogs, actual_batch_size): batch = batch_inputs[i : i + actual_batch_size] try: encoded_inputs = tokenizer( batch, padding=True, truncation=False, return_tensors="pt", ) input_ids = encoded_inputs["input_ids"].to(model.device) attention_mask = encoded_inputs["attention_mask"].to( model.device ) torch.cuda.synchronize() start_time = time.perf_counter() with torch.no_grad(): output_tokens = model.generate( input_ids, attention_mask=attention_mask, max_new_tokens=args.num_new_tokens, num_return_sequences=1, do_sample=True, temperature=args.temperature, pad_token_id=tokenizer.pad_token_id, eos_token_id=terminators, ) torch.cuda.synchronize() end_time = time.perf_counter() batch_time = end_time - start_time total_time += batch_time batch_generation_time += ( batch_time # Add to batch generation time ) total_generation_time += ( batch_time # Add to total generation time ) total_tokens += output_tokens.numel() if i == 0: total_ttft = batch_time # Decode the generated responses decoded_outputs = tokenizer.batch_decode( output_tokens, skip_special_tokens=True ) # Store the responses for j, response in enumerate(decoded_outputs): original_dialog = dialogs[i + j] formatted_response = format_response( original_dialog, response ) responses_by_batch_size[batch_size].append( formatted_response ) torch.cuda.empty_cache() except Exception as e: print( f"Error processing batch {i//batch_size + 1}: {str(e)}" ) continue avg_memory = np.mean(TorchTracemalloc.track_memory_consumption) memory_avg.append(avg_memory) tokens_per_sec = total_tokens / total_time if total_time > 0 else 0 tokens_per_sec_avg.append(tokens_per_sec) # Use actual_batch_size in calculations time_to_first_token = ( total_ttft / actual_batch_size if actual_batch_size > 0 else 0 ) time_to_first_token_avg.append(time_to_first_token) print(f"Actual Batch Size Used: {actual_batch_size}") print(f"GPU Memory Consumption (MiB): {avg_memory:.2f} MiB") print(f"Tokens per Second: {tokens_per_sec:.2f}") print(f"TTFT (seconds): {time_to_first_token:.4f} seconds") print( f"Time to generate answers for this batch size: {batch_generation_time:.2f} seconds" ) for batch_size, responses in responses_by_batch_size.items(): output_file = os.path.join( args.output_path, f"batch_{batch_size}_responses.json" ) with open(output_file, "w") as f: json.dump(responses, f, indent=2) save_bar_chart( title="GPU Memory Consumption as a Function of Batch Size", x=batch_sizes, y=memory_avg, xlabel="Batch Size", ylabel="GPU Memory Consumption (MiB)", output_path=f"{args.output_path}/memory_usage.png", ) save_bar_chart( title="Number of Tokens per Second as a Function of Batch Size", x=batch_sizes, y=tokens_per_sec_avg, xlabel="Batch Size", ylabel="Tokens per Second", output_path=f"{args.output_path}/tokens_per_second.png", ) save_bar_chart( title="Time to First Token (TTFT) as a Function of Batch Size", x=batch_sizes, y=time_to_first_token_avg, xlabel="Batch Size", ylabel="TTFT (seconds)", output_path=f"{args.output_path}/time_to_first_token.png", ) print( f"\nBenchmarking Results -> Model size: {args.model_size}, Max New Tokens: {args.num_new_tokens}, KV bits: {bits}" ) print(f"Batch Sizes: {batch_sizes}") print(f"GPU Memory Consumption (MiB): {memory_avg}") print(f"Tokens per Second: {tokens_per_sec_avg}") print(f"Time to First Token (seconds): {time_to_first_token_avg}") print( f"\nTotal time to generate all answers across all batches: {total_generation_time:.2f} seconds" ) print(f"Results and responses saved in: {args.output_path}") except Exception as e: print(f"An error occurred during script execution: {str(e)}")