# BERTology 大規模なトランスフォーマー、例えばBERTの内部動作を調査する研究領域が急成長しています(これを「BERTology」とも呼びます)。この分野の良い例は以下です: - BERT Rediscovers the Classical NLP Pipeline by Ian Tenney, Dipanjan Das, Ellie Pavlick: [論文リンク](https://arxiv.org/abs/1905.05950) - Are Sixteen Heads Really Better than One? by Paul Michel, Omer Levy, Graham Neubig: [論文リンク](https://arxiv.org/abs/1905.10650) - What Does BERT Look At? An Analysis of BERT's Attention by Kevin Clark, Urvashi Khandelwal, Omer Levy, Christopher D. Manning: [論文リンク](https://arxiv.org/abs/1906.04341) - CAT-probing: A Metric-based Approach to Interpret How Pre-trained Models for Programming Language Attend Code Structure: [論文リンク](https://arxiv.org/abs/2210.04633) この新しい分野の発展を支援するために、BERT/GPT/GPT-2モデルにいくつかの追加機能を組み込み、人々が内部表現にアクセスできるようにしました。これらの機能は、主にPaul Michel氏の優れた研究([論文リンク](https://arxiv.org/abs/1905.10650))に基づいています。具体的には、以下の機能が含まれています: - BERT/GPT/GPT-2のすべての隠れ状態にアクセスすることができます。 - BERT/GPT/GPT-2の各ヘッドの注意重みにアクセスできます。 - ヘッドの出力値と勾配を取得し、ヘッドの重要性スコアを計算し、[論文リンク](https://arxiv.org/abs/1905.10650)で説明されているようにヘッドを削減できます。 これらの機能を理解し、使用するのを支援するために、特定のサンプルスクリプト「[bertology.py](https://github.com/huggingface/transformers/tree/main/examples/research_projects/bertology/run_bertology.py)」を追加しました。このスクリプトは、GLUEで事前トレーニングされたモデルから情報を抽出し、ヘッドを削減する役割を果たします。