|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
import argparse |
|
import collections.abc |
|
import copy |
|
import inspect |
|
import json |
|
import multiprocessing |
|
import os |
|
import shutil |
|
import tempfile |
|
import traceback |
|
from pathlib import Path |
|
|
|
from check_config_docstrings import get_checkpoint_from_config_class |
|
from datasets import load_dataset |
|
from get_test_info import get_model_to_tester_mapping, get_tester_classes_for_model |
|
from huggingface_hub import Repository, create_repo, hf_api, upload_folder |
|
|
|
from transformers import ( |
|
CONFIG_MAPPING, |
|
FEATURE_EXTRACTOR_MAPPING, |
|
IMAGE_PROCESSOR_MAPPING, |
|
PROCESSOR_MAPPING, |
|
TOKENIZER_MAPPING, |
|
AutoTokenizer, |
|
LayoutLMv3TokenizerFast, |
|
PreTrainedTokenizer, |
|
PreTrainedTokenizerFast, |
|
logging, |
|
) |
|
from transformers.feature_extraction_utils import FeatureExtractionMixin |
|
from transformers.file_utils import is_tf_available, is_torch_available |
|
from transformers.image_processing_utils import BaseImageProcessor |
|
from transformers.models.auto.configuration_auto import AutoConfig, model_type_to_module_name |
|
from transformers.models.fsmt import configuration_fsmt |
|
from transformers.processing_utils import ProcessorMixin, transformers_module |
|
from transformers.tokenization_utils_base import PreTrainedTokenizerBase |
|
|
|
|
|
|
|
os.environ["TOKENIZERS_PARALLELISM"] = "false" |
|
|
|
logging.set_verbosity_error() |
|
logging.disable_progress_bar() |
|
logger = logging.get_logger(__name__) |
|
|
|
os.environ["TF_CPP_MIN_LOG_LEVEL"] = "3" |
|
|
|
if not is_torch_available(): |
|
raise ValueError("Please install PyTorch.") |
|
|
|
if not is_tf_available(): |
|
raise ValueError("Please install TensorFlow.") |
|
|
|
|
|
FRAMEWORKS = ["pytorch", "tensorflow"] |
|
INVALID_ARCH = [] |
|
TARGET_VOCAB_SIZE = 1024 |
|
|
|
data = {"training_ds": None, "testing_ds": None} |
|
|
|
COMPOSITE_MODELS = { |
|
"EncoderDecoderModel": "EncoderDecoderModel-bert-bert", |
|
"SpeechEncoderDecoderModel": "SpeechEncoderDecoderModel-wav2vec2-bert", |
|
"VisionEncoderDecoderModel": "VisionEncoderDecoderModel-vit-gpt2", |
|
"VisionTextDualEncoderModel": "VisionTextDualEncoderModel-vit-bert", |
|
} |
|
|
|
|
|
|
|
|
|
|
|
UNCONVERTIBLE_MODEL_ARCHITECTURES = { |
|
"BertGenerationEncoder", |
|
"BertGenerationDecoder", |
|
"CamembertForSequenceClassification", |
|
"CamembertForMultipleChoice", |
|
"CamembertForMaskedLM", |
|
"CamembertForCausalLM", |
|
"CamembertForTokenClassification", |
|
"CamembertForQuestionAnswering", |
|
"CamembertModel", |
|
"TFCamembertForMultipleChoice", |
|
"TFCamembertForTokenClassification", |
|
"TFCamembertForQuestionAnswering", |
|
"TFCamembertForSequenceClassification", |
|
"TFCamembertForMaskedLM", |
|
"TFCamembertModel", |
|
"TFCamembertForCausalLM", |
|
"DecisionTransformerModel", |
|
"GraphormerModel", |
|
"InformerModel", |
|
"JukeboxModel", |
|
"MarianForCausalLM", |
|
"MaskFormerSwinModel", |
|
"MaskFormerSwinBackbone", |
|
"MT5Model", |
|
"MT5ForConditionalGeneration", |
|
"UMT5ForConditionalGeneration", |
|
"TFMT5ForConditionalGeneration", |
|
"TFMT5Model", |
|
"QDQBertForSequenceClassification", |
|
"QDQBertForMaskedLM", |
|
"QDQBertModel", |
|
"QDQBertForTokenClassification", |
|
"QDQBertLMHeadModel", |
|
"QDQBertForMultipleChoice", |
|
"QDQBertForQuestionAnswering", |
|
"QDQBertForNextSentencePrediction", |
|
"ReformerModelWithLMHead", |
|
"RetriBertModel", |
|
"Speech2Text2ForCausalLM", |
|
"TimeSeriesTransformerModel", |
|
"TrajectoryTransformerModel", |
|
"TrOCRForCausalLM", |
|
"XLMProphetNetForConditionalGeneration", |
|
"XLMProphetNetForCausalLM", |
|
"XLMProphetNetModel", |
|
"XLMRobertaModel", |
|
"XLMRobertaForTokenClassification", |
|
"XLMRobertaForMultipleChoice", |
|
"XLMRobertaForMaskedLM", |
|
"XLMRobertaForCausalLM", |
|
"XLMRobertaForSequenceClassification", |
|
"XLMRobertaForQuestionAnswering", |
|
"TFXLMRobertaForSequenceClassification", |
|
"TFXLMRobertaForMaskedLM", |
|
"TFXLMRobertaForCausalLM", |
|
"TFXLMRobertaForQuestionAnswering", |
|
"TFXLMRobertaModel", |
|
"TFXLMRobertaForMultipleChoice", |
|
"TFXLMRobertaForTokenClassification", |
|
} |
|
|
|
|
|
def get_processor_types_from_config_class(config_class, allowed_mappings=None): |
|
"""Return a tuple of processors for `config_class`. |
|
|
|
We use `tuple` here to include (potentially) both slow & fast tokenizers. |
|
""" |
|
|
|
|
|
def _to_tuple(x): |
|
if not isinstance(x, collections.abc.Sequence): |
|
x = (x,) |
|
else: |
|
x = tuple(x) |
|
return x |
|
|
|
if allowed_mappings is None: |
|
allowed_mappings = ["processor", "tokenizer", "image_processor", "feature_extractor"] |
|
|
|
processor_types = () |
|
|
|
|
|
|
|
if config_class in PROCESSOR_MAPPING and "processor" in allowed_mappings: |
|
processor_types = _to_tuple(PROCESSOR_MAPPING[config_class]) |
|
else: |
|
if config_class in TOKENIZER_MAPPING and "tokenizer" in allowed_mappings: |
|
processor_types = TOKENIZER_MAPPING[config_class] |
|
|
|
if config_class in IMAGE_PROCESSOR_MAPPING and "image_processor" in allowed_mappings: |
|
processor_types += _to_tuple(IMAGE_PROCESSOR_MAPPING[config_class]) |
|
elif config_class in FEATURE_EXTRACTOR_MAPPING and "feature_extractor" in allowed_mappings: |
|
processor_types += _to_tuple(FEATURE_EXTRACTOR_MAPPING[config_class]) |
|
|
|
|
|
|
|
|
|
|
|
|
|
processor_types = tuple(p for p in processor_types if p is not None) |
|
|
|
return processor_types |
|
|
|
|
|
def get_architectures_from_config_class(config_class, arch_mappings, models_to_skip=None): |
|
"""Return a tuple of all possible architectures attributed to a configuration class `config_class`. |
|
|
|
For example, BertConfig -> [BertModel, BertForMaskedLM, ..., BertForQuestionAnswering]. |
|
""" |
|
|
|
|
|
|
|
|
|
|
|
|
|
architectures = set() |
|
|
|
if models_to_skip is None: |
|
models_to_skip = [] |
|
models_to_skip = UNCONVERTIBLE_MODEL_ARCHITECTURES.union(models_to_skip) |
|
|
|
for mapping in arch_mappings: |
|
if config_class in mapping: |
|
models = mapping[config_class] |
|
models = tuple(models) if isinstance(models, collections.abc.Sequence) else (models,) |
|
for model in models: |
|
if model.__name__ not in models_to_skip: |
|
architectures.add(model) |
|
|
|
architectures = tuple(architectures) |
|
|
|
return architectures |
|
|
|
|
|
def get_config_class_from_processor_class(processor_class): |
|
"""Get the config class from a processor class. |
|
|
|
Some config/model classes use tokenizers/feature_extractors from other models. For example, `GPT-J` uses |
|
`GPT2Tokenizer`. If no checkpoint is found for a config class, or a checkpoint is found without necessary file(s) to |
|
create the processor for `processor_class`, we get the config class that corresponds to `processor_class` and use it |
|
to find a checkpoint in order to create the processor. |
|
""" |
|
|
|
processor_prefix = processor_class.__name__ |
|
for postfix in ["TokenizerFast", "Tokenizer", "ImageProcessor", "FeatureExtractor", "Processor"]: |
|
processor_prefix = processor_prefix.replace(postfix, "") |
|
|
|
|
|
if processor_prefix == "Wav2Vec2CTC": |
|
processor_prefix = "Wav2Vec2" |
|
|
|
|
|
new_config_name = f"{processor_prefix}Config" |
|
new_config_class = getattr(transformers_module, new_config_name) |
|
|
|
return new_config_class |
|
|
|
|
|
def build_processor(config_class, processor_class, allow_no_checkpoint=False): |
|
"""Create a processor for `processor_class`. |
|
|
|
If a processor is not able to be built with the original arguments, this method tries to change the arguments and |
|
call itself recursively, by inferring a new `config_class` or a new `processor_class` from another one, in order to |
|
find a checkpoint containing the necessary files to build a processor. |
|
|
|
The processor is not saved here. Instead, it will be saved in `convert_processors` after further changes in |
|
`convert_processors`. For each model architecture`, a copy will be created and saved along the built model. |
|
""" |
|
|
|
checkpoint = get_checkpoint_from_config_class(config_class) |
|
|
|
if checkpoint is None: |
|
|
|
|
|
config_class_from_processor_class = get_config_class_from_processor_class(processor_class) |
|
checkpoint = get_checkpoint_from_config_class(config_class_from_processor_class) |
|
|
|
processor = None |
|
try: |
|
processor = processor_class.from_pretrained(checkpoint) |
|
except Exception as e: |
|
logger.error(f"{e.__class__.__name__}: {e}") |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
if ( |
|
processor is None |
|
and checkpoint is not None |
|
and issubclass(processor_class, (PreTrainedTokenizerBase, AutoTokenizer)) |
|
): |
|
try: |
|
config = AutoConfig.from_pretrained(checkpoint) |
|
except Exception as e: |
|
logger.error(f"{e.__class__.__name__}: {e}") |
|
config = None |
|
if config is not None: |
|
if not isinstance(config, config_class): |
|
raise ValueError( |
|
f"`config` (which is of type {config.__class__.__name__}) should be an instance of `config_class`" |
|
f" ({config_class.__name__})!" |
|
) |
|
tokenizer_class = config.tokenizer_class |
|
new_processor_class = None |
|
if tokenizer_class is not None: |
|
new_processor_class = getattr(transformers_module, tokenizer_class) |
|
if new_processor_class != processor_class: |
|
processor = build_processor(config_class, new_processor_class) |
|
|
|
|
|
if processor is None: |
|
new_processor_classes = get_processor_types_from_config_class( |
|
config.__class__, allowed_mappings=["tokenizer"] |
|
) |
|
|
|
names = [ |
|
x.__name__.replace("Fast", "") for x in [processor_class, new_processor_class] if x is not None |
|
] |
|
new_processor_classes = [ |
|
x for x in new_processor_classes if x is not None and x.__name__.replace("Fast", "") not in names |
|
] |
|
if len(new_processor_classes) > 0: |
|
new_processor_class = new_processor_classes[0] |
|
|
|
for x in new_processor_classes: |
|
if x.__name__.endswith("Fast"): |
|
new_processor_class = x |
|
break |
|
processor = build_processor(config_class, new_processor_class) |
|
|
|
if processor is None: |
|
|
|
if issubclass(processor_class, ProcessorMixin): |
|
attrs = {} |
|
for attr_name in processor_class.attributes: |
|
attrs[attr_name] = [] |
|
|
|
|
|
|
|
attr_class_names = getattr(processor_class, f"{attr_name}_class") |
|
if not isinstance(attr_class_names, tuple): |
|
attr_class_names = (attr_class_names,) |
|
|
|
for name in attr_class_names: |
|
attr_class = getattr(transformers_module, name) |
|
attr = build_processor(config_class, attr_class) |
|
if attr is not None: |
|
attrs[attr_name].append(attr) |
|
|
|
|
|
if all(len(v) > 0 for v in attrs.values()): |
|
try: |
|
processor = processor_class(**{k: v[0] for k, v in attrs.items()}) |
|
except Exception as e: |
|
logger.error(f"{e.__class__.__name__}: {e}") |
|
else: |
|
|
|
|
|
|
|
config_class_from_processor_class = get_config_class_from_processor_class(processor_class) |
|
if config_class_from_processor_class != config_class: |
|
processor = build_processor(config_class_from_processor_class, processor_class) |
|
|
|
|
|
if ( |
|
processor is None |
|
and allow_no_checkpoint |
|
and (issubclass(processor_class, BaseImageProcessor) or issubclass(processor_class, FeatureExtractionMixin)) |
|
): |
|
try: |
|
processor = processor_class() |
|
except Exception as e: |
|
logger.error(f"{e.__class__.__name__}: {e}") |
|
|
|
|
|
if processor is not None: |
|
if not (isinstance(processor, processor_class) or processor_class.__name__.startswith("Auto")): |
|
raise ValueError( |
|
f"`processor` (which is of type {processor.__class__.__name__}) should be an instance of" |
|
f" {processor_class.__name__} or an Auto class!" |
|
) |
|
|
|
return processor |
|
|
|
|
|
def get_tiny_config(config_class, model_class=None, **model_tester_kwargs): |
|
"""Retrieve a tiny configuration from `config_class` using each model's `ModelTester`. |
|
|
|
Args: |
|
config_class: Subclass of `PreTrainedConfig`. |
|
|
|
Returns: |
|
An instance of `config_class` with tiny hyperparameters |
|
""" |
|
model_type = config_class.model_type |
|
|
|
|
|
|
|
|
|
config_source_file = inspect.getsourcefile(config_class) |
|
|
|
modeling_name = config_source_file.split(os.path.sep)[-1].replace("configuration_", "").replace(".py", "") |
|
|
|
try: |
|
print("Importing", model_type_to_module_name(model_type)) |
|
module_name = model_type_to_module_name(model_type) |
|
if not modeling_name.startswith(module_name): |
|
raise ValueError(f"{modeling_name} doesn't start with {module_name}!") |
|
test_file = os.path.join("tests", "models", module_name, f"test_modeling_{modeling_name}.py") |
|
models_to_model_testers = get_model_to_tester_mapping(test_file) |
|
|
|
model_tester_class = None |
|
tester_classes = [] |
|
if model_class is not None: |
|
tester_classes = get_tester_classes_for_model(test_file, model_class) |
|
else: |
|
for _tester_classes in models_to_model_testers.values(): |
|
tester_classes.extend(_tester_classes) |
|
if len(tester_classes) > 0: |
|
|
|
|
|
|
|
|
|
model_tester_class = sorted(tester_classes, key=lambda x: (len(x.__name__), x.__name__))[0] |
|
except ModuleNotFoundError: |
|
error = f"Tiny config not created for {model_type} - cannot find the testing module from the model name." |
|
raise ValueError(error) |
|
|
|
if model_tester_class is None: |
|
error = f"Tiny config not created for {model_type} - no model tester is found in the testing module." |
|
raise ValueError(error) |
|
|
|
|
|
|
|
|
|
if "vocab_size" in model_tester_kwargs: |
|
if "text_kwargs" in inspect.signature(model_tester_class.__init__).parameters.keys(): |
|
vocab_size = model_tester_kwargs.pop("vocab_size") |
|
model_tester_kwargs["text_kwargs"] = {"vocab_size": vocab_size} |
|
|
|
|
|
model_tester = model_tester_class(parent=None, **model_tester_kwargs) |
|
|
|
if hasattr(model_tester, "get_pipeline_config"): |
|
config = model_tester.get_pipeline_config() |
|
elif hasattr(model_tester, "prepare_config_and_inputs"): |
|
|
|
|
|
config = model_tester.prepare_config_and_inputs()[0] |
|
elif hasattr(model_tester, "get_config"): |
|
config = model_tester.get_config() |
|
else: |
|
error = ( |
|
f"Tiny config not created for {model_type} - the model tester {model_tester_class.__name__} lacks" |
|
" necessary method to create config." |
|
) |
|
raise ValueError(error) |
|
|
|
|
|
|
|
max_positions = [] |
|
for key in ["max_position_embeddings", "max_source_positions", "max_target_positions"]: |
|
if getattr(config, key, 0) > 0: |
|
max_positions.append(getattr(config, key)) |
|
if getattr(config, "text_config", None) is not None: |
|
if getattr(config.text_config, key, None) is not None: |
|
max_positions.append(getattr(config.text_config, key)) |
|
if len(max_positions) > 0: |
|
max_position = max(200, min(max_positions)) |
|
for key in ["max_position_embeddings", "max_source_positions", "max_target_positions"]: |
|
if getattr(config, key, 0) > 0: |
|
setattr(config, key, max_position) |
|
if getattr(config, "text_config", None) is not None: |
|
if getattr(config.text_config, key, None) is not None: |
|
setattr(config.text_config, key, max_position) |
|
|
|
return config |
|
|
|
|
|
def convert_tokenizer(tokenizer_fast: PreTrainedTokenizerFast): |
|
new_tokenizer = tokenizer_fast.train_new_from_iterator( |
|
data["training_ds"]["text"], TARGET_VOCAB_SIZE, show_progress=False |
|
) |
|
|
|
|
|
if not isinstance(new_tokenizer, LayoutLMv3TokenizerFast): |
|
new_tokenizer(data["testing_ds"]["text"]) |
|
|
|
return new_tokenizer |
|
|
|
|
|
def convert_feature_extractor(feature_extractor, tiny_config): |
|
to_convert = False |
|
kwargs = {} |
|
if hasattr(tiny_config, "image_size"): |
|
kwargs["size"] = tiny_config.image_size |
|
kwargs["crop_size"] = tiny_config.image_size |
|
to_convert = True |
|
elif ( |
|
hasattr(tiny_config, "vision_config") |
|
and tiny_config.vision_config is not None |
|
and hasattr(tiny_config.vision_config, "image_size") |
|
): |
|
kwargs["size"] = tiny_config.vision_config.image_size |
|
kwargs["crop_size"] = tiny_config.vision_config.image_size |
|
to_convert = True |
|
|
|
|
|
if hasattr(tiny_config, "input_feat_per_channel"): |
|
kwargs["feature_size"] = tiny_config.input_feat_per_channel |
|
kwargs["num_mel_bins"] = tiny_config.input_feat_per_channel |
|
to_convert = True |
|
|
|
if to_convert: |
|
feature_extractor = feature_extractor.__class__(**kwargs) |
|
|
|
return feature_extractor |
|
|
|
|
|
def convert_processors(processors, tiny_config, output_folder, result): |
|
"""Change a processor to work with smaller inputs. |
|
|
|
For tokenizers, we try to reduce their vocabulary size. |
|
|
|
For feature extractor, we use smaller image size or change |
|
other attributes using the values from `tiny_config`. See `convert_feature_extractor`. |
|
|
|
This method should not fail: we catch the errors and put them in `result["warnings"]` with descriptive messages. |
|
""" |
|
|
|
def _sanity_check(fast_tokenizer, slow_tokenizer, keep_fast_tokenizer=False): |
|
"""Set tokenizer(s) to `None` if the fast/slow tokenizers have different values for `vocab_size` or `length`. |
|
|
|
If `keep_fast_tokenizer=True`, the fast tokenizer will be kept. |
|
""" |
|
|
|
if fast_tokenizer is not None and slow_tokenizer is not None: |
|
if fast_tokenizer.vocab_size != slow_tokenizer.vocab_size: |
|
warning_messagae = ( |
|
"The fast/slow tokenizers " |
|
f"({fast_tokenizer.__class__.__name__}/{slow_tokenizer.__class__.__name__}) have different " |
|
"vocabulary size: " |
|
f"fast_tokenizer.vocab_size = {fast_tokenizer.vocab_size} and " |
|
f"slow_tokenizer.vocab_size = {slow_tokenizer.vocab_size}." |
|
) |
|
result["warnings"].append(warning_messagae) |
|
if not keep_fast_tokenizer: |
|
fast_tokenizer = None |
|
slow_tokenizer = None |
|
|
|
|
|
if fast_tokenizer is not None and slow_tokenizer is not None: |
|
if len(fast_tokenizer) != len(slow_tokenizer): |
|
warning_messagae = ( |
|
f"The fast/slow tokenizers () have different length: " |
|
f"len(fast_tokenizer) = {len(fast_tokenizer)} and " |
|
f"len(slow_tokenizer) = {len(slow_tokenizer)}." |
|
) |
|
result["warnings"].append(warning_messagae) |
|
if not keep_fast_tokenizer: |
|
fast_tokenizer = None |
|
slow_tokenizer = None |
|
|
|
return fast_tokenizer, slow_tokenizer |
|
|
|
tokenizers = [] |
|
feature_extractors = [] |
|
for processor in processors: |
|
if isinstance(processor, PreTrainedTokenizerBase): |
|
if processor.__class__.__name__ not in {x.__class__.__name__ for x in tokenizers}: |
|
tokenizers.append(processor) |
|
elif isinstance(processor, BaseImageProcessor): |
|
if processor.__class__.__name__ not in {x.__class__.__name__ for x in feature_extractors}: |
|
feature_extractors.append(processor) |
|
elif isinstance(processor, FeatureExtractionMixin): |
|
if processor.__class__.__name__ not in {x.__class__.__name__ for x in feature_extractors}: |
|
feature_extractors.append(processor) |
|
elif isinstance(processor, ProcessorMixin): |
|
if hasattr(processor, "tokenizer"): |
|
if processor.tokenizer.__class__.__name__ not in {x.__class__.__name__ for x in tokenizers}: |
|
tokenizers.append(processor.tokenizer) |
|
|
|
if hasattr(processor, "image_processor"): |
|
if processor.image_processor.__class__.__name__ not in { |
|
x.__class__.__name__ for x in feature_extractors |
|
}: |
|
feature_extractors.append(processor.image_processor) |
|
elif hasattr(processor, "feature_extractor"): |
|
if processor.feature_extractor.__class__.__name__ not in { |
|
x.__class__.__name__ for x in feature_extractors |
|
}: |
|
feature_extractors.append(processor.feature_extractor) |
|
|
|
|
|
num_types = len({x.__class__.__name__ for x in feature_extractors}) |
|
if num_types >= 2: |
|
raise ValueError(f"`feature_extractors` should contain at most 1 type, but it contains {num_types} types!") |
|
num_types = len({x.__class__.__name__.replace("Fast", "") for x in tokenizers}) |
|
if num_types >= 2: |
|
raise ValueError(f"`tokenizers` should contain at most 1 tokenizer type, but it contains {num_types} types!") |
|
|
|
fast_tokenizer = None |
|
slow_tokenizer = None |
|
|
|
for tokenizer in tokenizers: |
|
if isinstance(tokenizer, PreTrainedTokenizerFast): |
|
fast_tokenizer = tokenizer |
|
else: |
|
slow_tokenizer = tokenizer |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
fast_tokenizer, slow_tokenizer = _sanity_check(fast_tokenizer, slow_tokenizer, keep_fast_tokenizer=True) |
|
original_fast_tokenizer, original_slow_tokenizer = fast_tokenizer, slow_tokenizer |
|
|
|
if fast_tokenizer: |
|
try: |
|
|
|
|
|
if fast_tokenizer.vocab_size > TARGET_VOCAB_SIZE: |
|
fast_tokenizer = convert_tokenizer(fast_tokenizer) |
|
except Exception: |
|
result["warnings"].append( |
|
( |
|
f"Failed to convert the fast tokenizer for {fast_tokenizer.__class__.__name__}.", |
|
traceback.format_exc(), |
|
) |
|
) |
|
|
|
|
|
if fast_tokenizer: |
|
|
|
try: |
|
|
|
with tempfile.TemporaryDirectory() as tmpdir: |
|
fast_tokenizer.save_pretrained(tmpdir) |
|
try: |
|
slow_tokenizer = AutoTokenizer.from_pretrained(tmpdir, use_fast=False) |
|
except Exception: |
|
result["warnings"].append( |
|
( |
|
f"Failed to load the slow tokenizer saved from {fast_tokenizer.__class__.__name__}.", |
|
traceback.format_exc(), |
|
) |
|
) |
|
|
|
slow_tokenizer = None |
|
except Exception: |
|
result["warnings"].append( |
|
( |
|
f"Failed to save the fast tokenizer for {fast_tokenizer.__class__.__name__}.", |
|
traceback.format_exc(), |
|
) |
|
) |
|
fast_tokenizer = None |
|
|
|
|
|
|
|
fast_tokenizer, slow_tokenizer = _sanity_check(fast_tokenizer, slow_tokenizer, keep_fast_tokenizer=False) |
|
|
|
|
|
if (original_fast_tokenizer is not None and fast_tokenizer is None) or ( |
|
original_slow_tokenizer is not None and slow_tokenizer is None |
|
): |
|
warning_messagae = ( |
|
"There are some issues when converting the fast/slow tokenizers. The original tokenizers from the Hub " |
|
" will be used instead." |
|
) |
|
result["warnings"].append(warning_messagae) |
|
|
|
fast_tokenizer = original_fast_tokenizer |
|
slow_tokenizer = original_slow_tokenizer |
|
|
|
|
|
if fast_tokenizer: |
|
|
|
with tempfile.TemporaryDirectory() as tmpdir: |
|
try: |
|
fast_tokenizer.save_pretrained(tmpdir) |
|
except Exception: |
|
result["warnings"].append( |
|
( |
|
f"Failed to save the fast tokenizer for {fast_tokenizer.__class__.__name__}.", |
|
traceback.format_exc(), |
|
) |
|
) |
|
fast_tokenizer = None |
|
|
|
if slow_tokenizer: |
|
|
|
with tempfile.TemporaryDirectory() as tmpdir: |
|
try: |
|
slow_tokenizer.save_pretrained(tmpdir) |
|
except Exception: |
|
result["warnings"].append( |
|
( |
|
f"Failed to save the slow tokenizer for {slow_tokenizer.__class__.__name__}.", |
|
traceback.format_exc(), |
|
) |
|
) |
|
slow_tokenizer = None |
|
|
|
|
|
try: |
|
feature_extractors = [convert_feature_extractor(p, tiny_config) for p in feature_extractors] |
|
except Exception: |
|
result["warnings"].append( |
|
( |
|
"Failed to convert feature extractors.", |
|
traceback.format_exc(), |
|
) |
|
) |
|
feature_extractors = [] |
|
|
|
if hasattr(tiny_config, "max_position_embeddings") and tiny_config.max_position_embeddings > 0: |
|
if fast_tokenizer is not None: |
|
if fast_tokenizer.__class__.__name__ in [ |
|
"RobertaTokenizerFast", |
|
"XLMRobertaTokenizerFast", |
|
"LongformerTokenizerFast", |
|
"MPNetTokenizerFast", |
|
]: |
|
fast_tokenizer.model_max_length = tiny_config.max_position_embeddings - 2 |
|
else: |
|
fast_tokenizer.model_max_length = tiny_config.max_position_embeddings |
|
if slow_tokenizer is not None: |
|
if slow_tokenizer.__class__.__name__ in [ |
|
"RobertaTokenizer", |
|
"XLMRobertaTokenizer", |
|
"LongformerTokenizer", |
|
"MPNetTokenizer", |
|
]: |
|
slow_tokenizer.model_max_length = tiny_config.max_position_embeddings - 2 |
|
else: |
|
slow_tokenizer.model_max_length = tiny_config.max_position_embeddings |
|
|
|
processors = [fast_tokenizer, slow_tokenizer] + feature_extractors |
|
processors = [p for p in processors if p is not None] |
|
for p in processors: |
|
p.save_pretrained(output_folder) |
|
|
|
return processors |
|
|
|
|
|
def get_checkpoint_dir(output_dir, model_arch): |
|
"""Get framework-agnostic architecture name. Used to save all PT/TF/Flax models into the same directory.""" |
|
|
|
arch_name = model_arch.__name__ |
|
if arch_name.startswith("TF"): |
|
arch_name = arch_name[2:] |
|
elif arch_name.startswith("Flax"): |
|
arch_name = arch_name[4:] |
|
|
|
return os.path.join(output_dir, arch_name) |
|
|
|
|
|
def build_model(model_arch, tiny_config, output_dir): |
|
"""Create and save a model for `model_arch`. |
|
|
|
Also copy the set of processors to each model (under the same model type) output folder. |
|
""" |
|
|
|
checkpoint_dir = get_checkpoint_dir(output_dir, model_arch) |
|
|
|
processor_output_dir = os.path.join(output_dir, "processors") |
|
|
|
if os.path.isdir(processor_output_dir): |
|
shutil.copytree(processor_output_dir, checkpoint_dir, dirs_exist_ok=True) |
|
|
|
tiny_config = copy.deepcopy(tiny_config) |
|
|
|
if any(model_arch.__name__.endswith(x) for x in ["ForCausalLM", "LMHeadModel"]): |
|
tiny_config.is_encoder_decoder = False |
|
tiny_config.is_decoder = True |
|
|
|
model = model_arch(config=tiny_config) |
|
model.save_pretrained(checkpoint_dir) |
|
model.from_pretrained(checkpoint_dir) |
|
|
|
return model |
|
|
|
|
|
def fill_result_with_error(result, error, trace, models_to_create): |
|
"""Fill `result` with errors for all target model arch if we can't build processor""" |
|
error = (error, trace) |
|
result["error"] = error |
|
for framework in FRAMEWORKS: |
|
if framework in models_to_create: |
|
result[framework] = {} |
|
for model_arch in models_to_create[framework]: |
|
result[framework][model_arch.__name__] = {"model": None, "checkpoint": None, "error": error} |
|
|
|
result["processor"] = {p.__class__.__name__: p.__class__.__name__ for p in result["processor"].values()} |
|
|
|
|
|
def upload_model(model_dir, organization, token): |
|
"""Upload the tiny models""" |
|
|
|
arch_name = model_dir.split(os.path.sep)[-1] |
|
repo_name = f"tiny-random-{arch_name}" |
|
repo_id = f"{organization}/{repo_name}" |
|
|
|
repo_exist = False |
|
error = None |
|
try: |
|
create_repo(repo_id=repo_id, exist_ok=False, repo_type="model", token=token) |
|
except Exception as e: |
|
error = e |
|
if "You already created" in str(e): |
|
error = None |
|
logger.warning("Remote repository exists and will be cloned.") |
|
repo_exist = True |
|
try: |
|
create_repo(repo_id=repo_id, exist_ok=True, repo_type="model", token=token) |
|
except Exception as e: |
|
error = e |
|
if error is not None: |
|
raise error |
|
|
|
with tempfile.TemporaryDirectory() as tmpdir: |
|
repo = Repository(local_dir=tmpdir, clone_from=repo_id, token=token) |
|
repo.git_pull() |
|
shutil.copytree(model_dir, tmpdir, dirs_exist_ok=True) |
|
|
|
if repo_exist: |
|
|
|
hub_pr_url = upload_folder( |
|
folder_path=model_dir, |
|
repo_id=repo_id, |
|
repo_type="model", |
|
commit_message=f"Update tiny models for {arch_name}", |
|
commit_description=f"Upload tiny models for {arch_name}", |
|
create_pr=True, |
|
token=token, |
|
) |
|
logger.warning(f"PR open in {hub_pr_url}.") |
|
|
|
else: |
|
|
|
repo.git_add(auto_lfs_track=True) |
|
repo.git_commit(f"Upload tiny models for {arch_name}") |
|
repo.git_push(blocking=True) |
|
logger.warning(f"Tiny models {arch_name} pushed to {repo_id}.") |
|
|
|
|
|
def build_composite_models(config_class, output_dir): |
|
import tempfile |
|
|
|
from transformers import ( |
|
BertConfig, |
|
BertLMHeadModel, |
|
BertModel, |
|
BertTokenizer, |
|
BertTokenizerFast, |
|
EncoderDecoderModel, |
|
GPT2Config, |
|
GPT2LMHeadModel, |
|
GPT2Tokenizer, |
|
GPT2TokenizerFast, |
|
SpeechEncoderDecoderModel, |
|
TFEncoderDecoderModel, |
|
TFVisionEncoderDecoderModel, |
|
TFVisionTextDualEncoderModel, |
|
VisionEncoderDecoderModel, |
|
VisionTextDualEncoderModel, |
|
ViTConfig, |
|
ViTFeatureExtractor, |
|
ViTModel, |
|
Wav2Vec2Config, |
|
Wav2Vec2Model, |
|
Wav2Vec2Processor, |
|
) |
|
|
|
|
|
result = {"error": None, "warnings": []} |
|
|
|
if config_class.model_type == "encoder-decoder": |
|
encoder_config_class = BertConfig |
|
decoder_config_class = BertConfig |
|
encoder_processor = (BertTokenizerFast, BertTokenizer) |
|
decoder_processor = (BertTokenizerFast, BertTokenizer) |
|
encoder_class = BertModel |
|
decoder_class = BertLMHeadModel |
|
model_class = EncoderDecoderModel |
|
tf_model_class = TFEncoderDecoderModel |
|
elif config_class.model_type == "vision-encoder-decoder": |
|
encoder_config_class = ViTConfig |
|
decoder_config_class = GPT2Config |
|
encoder_processor = (ViTFeatureExtractor,) |
|
decoder_processor = (GPT2TokenizerFast, GPT2Tokenizer) |
|
encoder_class = ViTModel |
|
decoder_class = GPT2LMHeadModel |
|
model_class = VisionEncoderDecoderModel |
|
tf_model_class = TFVisionEncoderDecoderModel |
|
elif config_class.model_type == "speech-encoder-decoder": |
|
encoder_config_class = Wav2Vec2Config |
|
decoder_config_class = BertConfig |
|
encoder_processor = (Wav2Vec2Processor,) |
|
decoder_processor = (BertTokenizerFast, BertTokenizer) |
|
encoder_class = Wav2Vec2Model |
|
decoder_class = BertLMHeadModel |
|
model_class = SpeechEncoderDecoderModel |
|
tf_model_class = None |
|
elif config_class.model_type == "vision-text-dual-encoder": |
|
|
|
encoder_config_class = ViTConfig |
|
decoder_config_class = BertConfig |
|
encoder_processor = (ViTFeatureExtractor,) |
|
decoder_processor = (BertTokenizerFast, BertTokenizer) |
|
encoder_class = ViTModel |
|
decoder_class = BertModel |
|
model_class = VisionTextDualEncoderModel |
|
tf_model_class = TFVisionTextDualEncoderModel |
|
|
|
with tempfile.TemporaryDirectory() as tmpdir: |
|
try: |
|
|
|
models_to_create = {"processor": encoder_processor, "pytorch": (encoder_class,), "tensorflow": []} |
|
encoder_output_dir = os.path.join(tmpdir, "encoder") |
|
build(encoder_config_class, models_to_create, encoder_output_dir) |
|
|
|
|
|
models_to_create = {"processor": decoder_processor, "pytorch": (decoder_class,), "tensorflow": []} |
|
decoder_output_dir = os.path.join(tmpdir, "decoder") |
|
build(decoder_config_class, models_to_create, decoder_output_dir) |
|
|
|
|
|
encoder_path = os.path.join(encoder_output_dir, encoder_class.__name__) |
|
decoder_path = os.path.join(decoder_output_dir, decoder_class.__name__) |
|
|
|
if config_class.model_type != "vision-text-dual-encoder": |
|
|
|
|
|
decoder_config = decoder_config_class.from_pretrained(decoder_path) |
|
decoder_config.is_decoder = True |
|
decoder_config.add_cross_attention = True |
|
model = model_class.from_encoder_decoder_pretrained( |
|
encoder_path, |
|
decoder_path, |
|
decoder_config=decoder_config, |
|
) |
|
elif config_class.model_type == "vision-text-dual-encoder": |
|
model = model_class.from_vision_text_pretrained(encoder_path, decoder_path) |
|
|
|
model_path = os.path.join( |
|
output_dir, |
|
f"{model_class.__name__}-{encoder_config_class.model_type}-{decoder_config_class.model_type}", |
|
) |
|
model.save_pretrained(model_path) |
|
|
|
if tf_model_class is not None: |
|
model = tf_model_class.from_pretrained(model_path) |
|
model.save_pretrained(model_path) |
|
|
|
|
|
encoder_processor_path = os.path.join(encoder_output_dir, "processors") |
|
decoder_processor_path = os.path.join(decoder_output_dir, "processors") |
|
if os.path.isdir(encoder_processor_path): |
|
shutil.copytree(encoder_processor_path, model_path, dirs_exist_ok=True) |
|
if os.path.isdir(decoder_processor_path): |
|
shutil.copytree(decoder_processor_path, model_path, dirs_exist_ok=True) |
|
|
|
|
|
result["processor"] = {x.__name__: x.__name__ for x in encoder_processor + decoder_processor} |
|
|
|
result["pytorch"] = {model_class.__name__: {"model": model_class.__name__, "checkpoint": model_path}} |
|
|
|
result["tensorflow"] = {} |
|
if tf_model_class is not None: |
|
result["tensorflow"] = { |
|
tf_model_class.__name__: {"model": tf_model_class.__name__, "checkpoint": model_path} |
|
} |
|
except Exception: |
|
result["error"] = ( |
|
f"Failed to build models for {config_class.__name__}.", |
|
traceback.format_exc(), |
|
) |
|
|
|
if not result["error"]: |
|
del result["error"] |
|
if not result["warnings"]: |
|
del result["warnings"] |
|
|
|
return result |
|
|
|
|
|
def get_token_id_from_tokenizer(token_id_name, tokenizer, original_token_id): |
|
"""Use `tokenizer` to get the values of `bos_token_id`, `eos_token_ids`, etc. |
|
|
|
The argument `token_id_name` should be a string ending with `_token_id`, and `original_token_id` should be an |
|
integer that will be return if `tokenizer` has no token corresponding to `token_id_name`. |
|
""" |
|
|
|
token_id = original_token_id |
|
|
|
if not token_id_name.endswith("_token_id"): |
|
raise ValueError(f"`token_id_name` is {token_id_name}, which doesn't end with `_token_id`!") |
|
|
|
token = getattr(tokenizer, token_id_name.replace("_token_id", "_token"), None) |
|
if token is not None: |
|
if isinstance(tokenizer, PreTrainedTokenizerFast): |
|
token_id = tokenizer._convert_token_to_id_with_added_voc(token) |
|
else: |
|
token_id = tokenizer._convert_token_to_id(token) |
|
|
|
return token_id |
|
|
|
|
|
def get_config_overrides(config_class, processors): |
|
|
|
if config_class.__name__ == "BarkConfig": |
|
return {} |
|
|
|
config_overrides = {} |
|
|
|
|
|
tokenizer = None |
|
for processor in processors: |
|
if isinstance(processor, PreTrainedTokenizerFast): |
|
tokenizer = processor |
|
break |
|
elif isinstance(processor, PreTrainedTokenizer): |
|
tokenizer = processor |
|
|
|
if tokenizer is None: |
|
return config_overrides |
|
|
|
|
|
|
|
|
|
vocab_size = len(tokenizer) |
|
|
|
|
|
|
|
if config_class.__name__ == "GPTSanJapaneseConfig": |
|
vocab_size += 2 |
|
|
|
config_overrides["vocab_size"] = vocab_size |
|
|
|
|
|
model_tester_kwargs = {"vocab_size": vocab_size} |
|
|
|
if config_class.__name__ == "FSMTConfig": |
|
del model_tester_kwargs["vocab_size"] |
|
model_tester_kwargs["src_vocab_size"] = tokenizer.src_vocab_size |
|
model_tester_kwargs["tgt_vocab_size"] = tokenizer.tgt_vocab_size |
|
|
|
_tiny_config = get_tiny_config(config_class, **model_tester_kwargs) |
|
|
|
|
|
if hasattr(_tiny_config, "text_config"): |
|
_tiny_config = _tiny_config.text_config |
|
|
|
|
|
for attr in dir(_tiny_config): |
|
if attr.endswith("_token_id"): |
|
token_id = getattr(_tiny_config, attr) |
|
if token_id is not None: |
|
|
|
token_id = get_token_id_from_tokenizer(attr, tokenizer, original_token_id=token_id) |
|
config_overrides[attr] = token_id |
|
|
|
if config_class.__name__ == "FSMTConfig": |
|
config_overrides["src_vocab_size"] = tokenizer.src_vocab_size |
|
config_overrides["tgt_vocab_size"] = tokenizer.tgt_vocab_size |
|
|
|
config_overrides["decoder"] = configuration_fsmt.DecoderConfig( |
|
vocab_size=tokenizer.tgt_vocab_size, bos_token_id=config_overrides["eos_token_id"] |
|
) |
|
|
|
return config_overrides |
|
|
|
|
|
def build(config_class, models_to_create, output_dir): |
|
"""Create all models for a certain model type. |
|
|
|
Args: |
|
config_class (`PretrainedConfig`): |
|
A subclass of `PretrainedConfig` that is used to determine `models_to_create`. |
|
models_to_create (`dict`): |
|
A dictionary containing the processor/model classes that we want to create the instances. These models are |
|
of the same model type which is associated to `config_class`. |
|
output_dir (`str`): |
|
The directory to save all the checkpoints. Each model architecture will be saved in a subdirectory under |
|
it. Models in different frameworks with the same architecture will be saved in the same subdirectory. |
|
""" |
|
if data["training_ds"] is None or data["testing_ds"] is None: |
|
ds = load_dataset("wikitext", "wikitext-2-raw-v1") |
|
data["training_ds"] = ds["train"] |
|
data["testing_ds"] = ds["test"] |
|
|
|
if config_class.model_type in [ |
|
"encoder-decoder", |
|
"vision-encoder-decoder", |
|
"speech-encoder-decoder", |
|
"vision-text-dual-encoder", |
|
]: |
|
return build_composite_models(config_class, output_dir) |
|
|
|
result = {k: {} for k in models_to_create} |
|
|
|
|
|
result["error"] = None |
|
result["warnings"] = [] |
|
|
|
|
|
processor_classes = models_to_create["processor"] |
|
|
|
if len(processor_classes) == 0: |
|
error = f"No processor class could be found in {config_class.__name__}." |
|
fill_result_with_error(result, error, None, models_to_create) |
|
logger.error(result["error"][0]) |
|
return result |
|
|
|
for processor_class in processor_classes: |
|
try: |
|
processor = build_processor(config_class, processor_class, allow_no_checkpoint=True) |
|
if processor is not None: |
|
result["processor"][processor_class] = processor |
|
except Exception: |
|
error = f"Failed to build processor for {processor_class.__name__}." |
|
trace = traceback.format_exc() |
|
fill_result_with_error(result, error, trace, models_to_create) |
|
logger.error(result["error"][0]) |
|
return result |
|
|
|
if len(result["processor"]) == 0: |
|
error = f"No processor could be built for {config_class.__name__}." |
|
fill_result_with_error(result, error, None, models_to_create) |
|
logger.error(result["error"][0]) |
|
return result |
|
|
|
try: |
|
tiny_config = get_tiny_config(config_class) |
|
except Exception as e: |
|
error = f"Failed to get tiny config for {config_class.__name__}: {e}" |
|
trace = traceback.format_exc() |
|
fill_result_with_error(result, error, trace, models_to_create) |
|
logger.error(result["error"][0]) |
|
return result |
|
|
|
|
|
processors = list(result["processor"].values()) |
|
processor_output_folder = os.path.join(output_dir, "processors") |
|
try: |
|
processors = convert_processors(processors, tiny_config, processor_output_folder, result) |
|
except Exception: |
|
error = "Failed to convert the processors." |
|
trace = traceback.format_exc() |
|
result["warnings"].append((error, trace)) |
|
|
|
if len(processors) == 0: |
|
error = f"No processor is returned by `convert_processors` for {config_class.__name__}." |
|
fill_result_with_error(result, error, None, models_to_create) |
|
logger.error(result["error"][0]) |
|
return result |
|
|
|
try: |
|
config_overrides = get_config_overrides(config_class, processors) |
|
except Exception as e: |
|
error = f"Failure occurs while calling `get_config_overrides`: {e}" |
|
trace = traceback.format_exc() |
|
fill_result_with_error(result, error, trace, models_to_create) |
|
logger.error(result["error"][0]) |
|
return result |
|
|
|
|
|
if "vocab_size" in config_overrides: |
|
result["vocab_size"] = config_overrides["vocab_size"] |
|
|
|
|
|
for k, v in config_overrides.items(): |
|
if hasattr(tiny_config, k): |
|
setattr(tiny_config, k, v) |
|
|
|
|
|
|
|
if ( |
|
hasattr(tiny_config, "text_config") |
|
and tiny_config.text_config is not None |
|
and hasattr(tiny_config.text_config, k) |
|
): |
|
setattr(tiny_config.text_config, k, v) |
|
|
|
|
|
if hasattr(tiny_config, "text_config_dict"): |
|
tiny_config.text_config_dict[k] = v |
|
|
|
if result["warnings"]: |
|
logger.warning(result["warnings"][0][0]) |
|
|
|
|
|
result["processor"] = {type(p).__name__: p.__class__.__name__ for p in processors} |
|
|
|
for pytorch_arch in models_to_create["pytorch"]: |
|
result["pytorch"][pytorch_arch.__name__] = {} |
|
error = None |
|
try: |
|
model = build_model(pytorch_arch, tiny_config, output_dir=output_dir) |
|
except Exception as e: |
|
model = None |
|
error = f"Failed to create the pytorch model for {pytorch_arch}: {e}" |
|
trace = traceback.format_exc() |
|
|
|
result["pytorch"][pytorch_arch.__name__]["model"] = model.__class__.__name__ if model is not None else None |
|
result["pytorch"][pytorch_arch.__name__]["checkpoint"] = ( |
|
get_checkpoint_dir(output_dir, pytorch_arch) if model is not None else None |
|
) |
|
if error is not None: |
|
result["pytorch"][pytorch_arch.__name__]["error"] = (error, trace) |
|
logger.error(f"{pytorch_arch.__name__}: {error}") |
|
|
|
for tensorflow_arch in models_to_create["tensorflow"]: |
|
|
|
pt_arch_name = tensorflow_arch.__name__[2:] |
|
pt_arch = getattr(transformers_module, pt_arch_name) |
|
|
|
result["tensorflow"][tensorflow_arch.__name__] = {} |
|
error = None |
|
if pt_arch.__name__ in result["pytorch"] and result["pytorch"][pt_arch.__name__]["checkpoint"] is not None: |
|
ckpt = get_checkpoint_dir(output_dir, pt_arch) |
|
|
|
try: |
|
model = tensorflow_arch.from_pretrained(ckpt) |
|
model.save_pretrained(ckpt) |
|
except Exception as e: |
|
|
|
model = None |
|
error = f"Failed to convert the pytorch model to the tensorflow model for {pt_arch}: {e}" |
|
trace = traceback.format_exc() |
|
else: |
|
try: |
|
model = build_model(tensorflow_arch, tiny_config, output_dir=output_dir) |
|
except Exception as e: |
|
model = None |
|
error = f"Failed to create the tensorflow model for {tensorflow_arch}: {e}" |
|
trace = traceback.format_exc() |
|
|
|
result["tensorflow"][tensorflow_arch.__name__]["model"] = ( |
|
model.__class__.__name__ if model is not None else None |
|
) |
|
result["tensorflow"][tensorflow_arch.__name__]["checkpoint"] = ( |
|
get_checkpoint_dir(output_dir, tensorflow_arch) if model is not None else None |
|
) |
|
if error is not None: |
|
result["tensorflow"][tensorflow_arch.__name__]["error"] = (error, trace) |
|
logger.error(f"{tensorflow_arch.__name__}: {error}") |
|
|
|
if not result["error"]: |
|
del result["error"] |
|
if not result["warnings"]: |
|
del result["warnings"] |
|
|
|
return result |
|
|
|
|
|
def build_tiny_model_summary(results, organization=None, token=None): |
|
"""Build a summary: a dictionary of the form |
|
{ |
|
model architecture name: |
|
{ |
|
"tokenizer_classes": [...], |
|
"processor_classes": [...], |
|
"model_classes": [...], |
|
} |
|
.. |
|
} |
|
""" |
|
tiny_model_summary = {} |
|
for config_name in results: |
|
processors = [key for key, value in results[config_name]["processor"].items()] |
|
tokenizer_classes = sorted([x for x in processors if x.endswith("TokenizerFast") or x.endswith("Tokenizer")]) |
|
processor_classes = sorted([x for x in processors if x not in tokenizer_classes]) |
|
for framework in FRAMEWORKS: |
|
if framework not in results[config_name]: |
|
continue |
|
for arch_name in results[config_name][framework]: |
|
model_classes = [arch_name] |
|
base_arch_name = arch_name[2:] if arch_name.startswith("TF") else arch_name |
|
|
|
if results[config_name][framework][arch_name]["model"] is None: |
|
model_classes = [] |
|
if base_arch_name not in tiny_model_summary: |
|
tiny_model_summary[base_arch_name] = {} |
|
tiny_model_summary[base_arch_name].update( |
|
{ |
|
"tokenizer_classes": tokenizer_classes, |
|
"processor_classes": processor_classes, |
|
} |
|
) |
|
tiny_model_summary[base_arch_name]["model_classes"] = sorted( |
|
tiny_model_summary[base_arch_name].get("model_classes", []) + model_classes |
|
) |
|
if organization is not None: |
|
repo_name = f"tiny-random-{base_arch_name}" |
|
|
|
if base_arch_name in COMPOSITE_MODELS: |
|
repo_name = f"tiny-random-{COMPOSITE_MODELS[base_arch_name]}" |
|
repo_id = f"{organization}/{repo_name}" |
|
try: |
|
commit_hash = hf_api.repo_info(repo_id, token=token).sha |
|
except Exception: |
|
|
|
logger.warning(f"Failed to get information for {repo_id}.\n{traceback.format_exc()}") |
|
del tiny_model_summary[base_arch_name] |
|
continue |
|
tiny_model_summary[base_arch_name]["sha"] = commit_hash |
|
|
|
return tiny_model_summary |
|
|
|
|
|
def build_failed_report(results, include_warning=True): |
|
failed_results = {} |
|
for config_name in results: |
|
if "error" in results[config_name]: |
|
if config_name not in failed_results: |
|
failed_results[config_name] = {} |
|
failed_results[config_name] = {"error": results[config_name]["error"]} |
|
|
|
if include_warning and "warnings" in results[config_name]: |
|
if config_name not in failed_results: |
|
failed_results[config_name] = {} |
|
failed_results[config_name]["warnings"] = results[config_name]["warnings"] |
|
|
|
for framework in FRAMEWORKS: |
|
if framework not in results[config_name]: |
|
continue |
|
for arch_name in results[config_name][framework]: |
|
if "error" in results[config_name][framework][arch_name]: |
|
if config_name not in failed_results: |
|
failed_results[config_name] = {} |
|
if framework not in failed_results[config_name]: |
|
failed_results[config_name][framework] = {} |
|
if arch_name not in failed_results[config_name][framework]: |
|
failed_results[config_name][framework][arch_name] = {} |
|
error = results[config_name][framework][arch_name]["error"] |
|
failed_results[config_name][framework][arch_name]["error"] = error |
|
|
|
return failed_results |
|
|
|
|
|
def build_simple_report(results): |
|
text = "" |
|
failed_text = "" |
|
for config_name in results: |
|
for framework in FRAMEWORKS: |
|
if framework not in results[config_name]: |
|
continue |
|
for arch_name in results[config_name][framework]: |
|
if "error" in results[config_name][framework][arch_name]: |
|
result = results[config_name][framework][arch_name]["error"] |
|
failed_text += f"{arch_name}: {result[0]}\n" |
|
else: |
|
result = ("OK",) |
|
text += f"{arch_name}: {result[0]}\n" |
|
|
|
return text, failed_text |
|
|
|
|
|
def update_tiny_model_summary_file(report_path): |
|
with open(os.path.join(report_path, "tiny_model_summary.json")) as fp: |
|
new_data = json.load(fp) |
|
with open("tests/utils/tiny_model_summary.json") as fp: |
|
data = json.load(fp) |
|
for key, value in new_data.items(): |
|
if key not in data: |
|
data[key] = value |
|
else: |
|
for attr in ["tokenizer_classes", "processor_classes", "model_classes"]: |
|
|
|
data[key][attr].extend(value[attr]) |
|
new_sha = value.get("sha", None) |
|
if new_sha is not None: |
|
data[key]["sha"] = new_sha |
|
|
|
updated_data = {} |
|
for key in sorted(data.keys()): |
|
updated_data[key] = {} |
|
for attr, value in data[key].items(): |
|
|
|
updated_data[key][attr] = sorted(set(value)) if attr != "sha" else value |
|
|
|
with open(os.path.join(report_path, "updated_tiny_model_summary.json"), "w") as fp: |
|
json.dump(updated_data, fp, indent=4, ensure_ascii=False) |
|
|
|
|
|
def create_tiny_models( |
|
output_path, |
|
all, |
|
model_types, |
|
models_to_skip, |
|
no_check, |
|
upload, |
|
organization, |
|
token, |
|
num_workers=1, |
|
): |
|
clone_path = os.path.abspath(os.path.dirname(os.path.dirname(__file__))) |
|
if os.getcwd() != clone_path: |
|
raise ValueError(f"This script should be run from the root of the clone of `transformers` {clone_path}") |
|
|
|
report_path = os.path.join(output_path, "reports") |
|
os.makedirs(report_path) |
|
|
|
_pytorch_arch_mappings = [ |
|
x |
|
for x in dir(transformers_module) |
|
if x.startswith("MODEL_") and x.endswith("_MAPPING") and x != "MODEL_NAMES_MAPPING" |
|
] |
|
_tensorflow_arch_mappings = [ |
|
x for x in dir(transformers_module) if x.startswith("TF_MODEL_") and x.endswith("_MAPPING") |
|
] |
|
|
|
pytorch_arch_mappings = [getattr(transformers_module, x) for x in _pytorch_arch_mappings] |
|
tensorflow_arch_mappings = [getattr(transformers_module, x) for x in _tensorflow_arch_mappings] |
|
|
|
config_classes = CONFIG_MAPPING.values() |
|
if not all: |
|
config_classes = [CONFIG_MAPPING[model_type] for model_type in model_types] |
|
|
|
|
|
processor_type_map = {c: get_processor_types_from_config_class(c) for c in config_classes} |
|
|
|
to_create = {} |
|
for c in config_classes: |
|
processors = processor_type_map[c] |
|
models = get_architectures_from_config_class(c, pytorch_arch_mappings, models_to_skip) |
|
tf_models = get_architectures_from_config_class(c, tensorflow_arch_mappings, models_to_skip) |
|
if len(models) + len(tf_models) > 0: |
|
to_create[c] = {"processor": processors, "pytorch": models, "tensorflow": tf_models} |
|
|
|
results = {} |
|
if num_workers <= 1: |
|
for c, models_to_create in list(to_create.items()): |
|
print(f"Create models for {c.__name__} ...") |
|
result = build(c, models_to_create, output_dir=os.path.join(output_path, c.model_type)) |
|
results[c.__name__] = result |
|
print("=" * 40) |
|
else: |
|
all_build_args = [] |
|
for c, models_to_create in list(to_create.items()): |
|
all_build_args.append((c, models_to_create, os.path.join(output_path, c.model_type))) |
|
with multiprocessing.Pool() as pool: |
|
results = pool.starmap(build, all_build_args) |
|
results = {buid_args[0].__name__: result for buid_args, result in zip(all_build_args, results)} |
|
|
|
if upload: |
|
if organization is None: |
|
raise ValueError("The argument `organization` could not be `None`. No model is uploaded") |
|
|
|
to_upload = [] |
|
for model_type in os.listdir(output_path): |
|
|
|
if model_type == "reports": |
|
continue |
|
for arch in os.listdir(os.path.join(output_path, model_type)): |
|
if arch == "processors": |
|
continue |
|
to_upload.append(os.path.join(output_path, model_type, arch)) |
|
to_upload = sorted(to_upload) |
|
|
|
upload_results = {} |
|
if len(to_upload) > 0: |
|
for model_dir in to_upload: |
|
try: |
|
upload_model(model_dir, organization, token) |
|
except Exception as e: |
|
error = f"Failed to upload {model_dir}. {e.__class__.__name__}: {e}" |
|
logger.error(error) |
|
upload_results[model_dir] = error |
|
|
|
with open(os.path.join(report_path, "failed_uploads.json"), "w") as fp: |
|
json.dump(upload_results, fp, indent=4) |
|
|
|
|
|
|
|
|
|
|
|
tiny_model_summary = build_tiny_model_summary(results, organization=organization, token=token) |
|
with open(os.path.join(report_path, "tiny_model_summary.json"), "w") as fp: |
|
json.dump(tiny_model_summary, fp, indent=4) |
|
|
|
with open(os.path.join(report_path, "tiny_model_creation_report.json"), "w") as fp: |
|
json.dump(results, fp, indent=4) |
|
|
|
|
|
|
|
failed_results = build_failed_report(results) |
|
with open(os.path.join(report_path, "failed_report.json"), "w") as fp: |
|
json.dump(failed_results, fp, indent=4) |
|
|
|
simple_report, failed_report = build_simple_report(results) |
|
|
|
|
|
with open(os.path.join(report_path, "simple_report.txt"), "w") as fp: |
|
fp.write(simple_report) |
|
|
|
|
|
with open(os.path.join(report_path, "simple_failed_report.txt"), "w") as fp: |
|
fp.write(failed_report) |
|
|
|
update_tiny_model_summary_file(report_path=os.path.join(output_path, "reports")) |
|
|
|
|
|
if __name__ == "__main__": |
|
|
|
multiprocessing.set_start_method("spawn") |
|
|
|
def list_str(values): |
|
return values.split(",") |
|
|
|
parser = argparse.ArgumentParser() |
|
parser.add_argument("--all", action="store_true", help="Will create all tiny models.") |
|
parser.add_argument( |
|
"--no_check", |
|
action="store_true", |
|
help="If set, will not check the validity of architectures. Use with caution.", |
|
) |
|
parser.add_argument( |
|
"-m", |
|
"--model_types", |
|
type=list_str, |
|
help="Comma-separated list of model type(s) from which the tiny models will be created.", |
|
) |
|
parser.add_argument( |
|
"--models_to_skip", |
|
type=list_str, |
|
help=( |
|
"Comma-separated list of model class names(s) from which the tiny models won't be created.\nThis is usually " |
|
"the list of model classes that have their tiny versions already uploaded to the Hub." |
|
), |
|
) |
|
parser.add_argument("--upload", action="store_true", help="If to upload the created tiny models to the Hub.") |
|
parser.add_argument( |
|
"--organization", |
|
default=None, |
|
type=str, |
|
help="The organization on the Hub to which the tiny models will be uploaded.", |
|
) |
|
parser.add_argument( |
|
"--token", default=None, type=str, help="A valid authentication token for HuggingFace Hub with write access." |
|
) |
|
parser.add_argument("output_path", type=Path, help="Path indicating where to store generated model.") |
|
parser.add_argument("--num_workers", default=1, type=int, help="The number of workers to run.") |
|
|
|
args = parser.parse_args() |
|
|
|
if not args.all and not args.model_types: |
|
raise ValueError("Please provide at least one model type or pass `--all` to export all architectures.") |
|
|
|
create_tiny_models( |
|
args.output_path, |
|
args.all, |
|
args.model_types, |
|
args.models_to_skip, |
|
args.no_check, |
|
args.upload, |
|
args.organization, |
|
args.token, |
|
args.num_workers, |
|
) |
|
|