File size: 7,260 Bytes
91fc62a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
import torch
import torch.nn.functional as F
from torch import nn
from typing import Union
import pytorch_lightning as pl


def gen_grid2d(grid_size: int, left_end: float=-1, right_end: float=1) -> torch.Tensor:
    """
    Generate a grid of size (grid_size, grid_size, 2) with coordinate values in the range [left_end, right_end]
    """
    x = torch.linspace(left_end, right_end, grid_size)
    x, y = torch.meshgrid([x, x], indexing='ij')
    grid = torch.cat((x.reshape(-1, 1), y.reshape(-1, 1)), dim=1).reshape(grid_size, grid_size, 2)
    return grid


def draw_lines(paired_joints: torch.Tensor, heatmap_size: int=16, thick: Union[float, torch.Tensor]=1e-2) -> torch.Tensor:
    """
    Draw lines on a grid.
    :param paired_joints: (batch_size, n_points, 2, 2)
    :return: (batch_size, n_points, grid_size, grid_size)
    dist[i,j] = ||x[b,i,:]-y[b,j,:]||^2
    """
    bs, n_points, _, _ = paired_joints.shape
    start = paired_joints[:, :, 0, :]   # (batch_size, n_points, 2)
    end = paired_joints[:, :, 1, :]     # (batch_size, n_points, 2)
    paired_diff = end - start           # (batch_size, n_points, 2)
    grid = gen_grid2d(heatmap_size).to(paired_joints.device).reshape(1, 1, -1, 2)
    diff_to_start = grid - start.unsqueeze(-2)  # (batch_size, n_points, heatmap_size**2, 2)
    # (batch_size, n_points, heatmap_size**2)
    t = (diff_to_start @ paired_diff.unsqueeze(-1)).squeeze(-1) / (1e-8+paired_diff.square().sum(dim=-1, keepdim=True))

    diff_to_end = grid - end.unsqueeze(-2)  # (batch_size, n_points, heatmap_size**2, 2)

    before_start = (t <= 0).float() * diff_to_start.square().sum(dim=-1)
    after_end = (t >= 1).float() * diff_to_end.square().sum(dim=-1)
    between_start_end = (0 < t).float() * (t < 1).float() * (grid - (start.unsqueeze(-2) + t.unsqueeze(-1) * paired_diff.unsqueeze(-2))).square().sum(dim=-1)

    squared_dist = (before_start + after_end + between_start_end).reshape(bs, n_points, heatmap_size, heatmap_size)
    heatmaps = torch.exp(- squared_dist / thick)
    return heatmaps


class DownBlock(nn.Module):
    def __init__(self, in_channels: int, out_channels: int) -> None:
        super().__init__()
        self.net = nn.Sequential(
            nn.Conv2d(in_channels, out_channels, kernel_size=(3, 3), padding=1),
            nn.BatchNorm2d(out_channels),
            nn.LeakyReLU(0.2, True),
            nn.Conv2d(out_channels, out_channels, kernel_size=(3, 3), padding=1),
            nn.BatchNorm2d(out_channels),
            nn.Upsample(scale_factor=0.5, mode='bilinear', align_corners=False),
            nn.LeakyReLU(0.2, True),
        )

    def forward(self, x: torch.Tensor) -> torch.Tensor:
        x = self.net(x)
        return x


class UpBlock(nn.Module):
    def __init__(self, in_channels: int, out_channels: int) -> None:
        super().__init__()
        self.net = nn.Sequential(
            nn.Upsample(scale_factor=2, mode='bilinear', align_corners=False),
            nn.Conv2d(in_channels, out_channels, kernel_size=(3, 3), padding=1),
            nn.BatchNorm2d(out_channels),
            nn.LeakyReLU(0.2, True),
            nn.Conv2d(out_channels, out_channels, kernel_size=(3, 3), padding=1),
            nn.BatchNorm2d(out_channels),
            nn.LeakyReLU(0.2, True),
        )

    def forward(self, x: torch.Tensor) -> torch.Tensor:
        x = self.net(x)
        return x


class Decoder(nn.Module):
    def __init__(self, hyper_paras: pl.LightningModule.hparams) -> None:
        super().__init__()
        self.n_parts = hyper_paras['n_parts']
        self.thick = hyper_paras['thick']
        self.sklr = hyper_paras['sklr']
        self.skeleton_idx = torch.triu_indices(self.n_parts, self.n_parts, offset=1)
        self.n_skeleton = len(self.skeleton_idx[0])

        self.alpha = nn.Parameter(torch.tensor(1.0), requires_grad=True)

        skeleton_scalar = (torch.randn(self.n_parts, self.n_parts) / 10 - 4) / self.sklr
        self.skeleton_scalar = nn.Parameter(skeleton_scalar, requires_grad=True)

        self.down0 = nn.Sequential(
            nn.Conv2d(3 + 1, 64, kernel_size=(3, 3), padding=1),
            nn.LeakyReLU(0.2, True),
        )

        self.down1 = DownBlock(64, 128)  # 64
        self.down2 = DownBlock(128, 256)  # 32
        self.down3 = DownBlock(256, 512)  # 16
        self.down4 = DownBlock(512, 512)  # 8

        self.up1 = UpBlock(512, 512)  # 16
        self.up2 = UpBlock(512 + 512, 256)  # 32
        self.up3 = UpBlock(256 + 256, 128)  # 64
        self.up4 = UpBlock(128 + 128, 64)  # 64

        self.conv = nn.Conv2d(64+64, 3, kernel_size=(3, 3), padding=1)

        for m in self.modules():
            if isinstance(m, nn.Conv2d) or isinstance(m, nn.Linear):
                nn.init.kaiming_normal_(m.weight, a=0.2)
                if m.bias is not None:
                    m.bias.data.zero_()

    def skeleton_scalar_matrix(self) -> torch.Tensor:
        """
        Give the skeleton scalar matrix
        :return: (n_parts, n_parts)
        """
        skeleton_scalar = F.softplus(self.skeleton_scalar * self.sklr)
        skeleton_scalar = torch.triu(skeleton_scalar, diagonal=1)
        skeleton_scalar = skeleton_scalar + skeleton_scalar.transpose(1, 0)
        return skeleton_scalar

    def rasterize(self, keypoints: torch.Tensor, output_size: int=128) -> torch.Tensor:
        """
        Generate edge heatmap from keypoints, where edges are weighted by the learned scalars.
        :param keypoints: (batch_size, n_points, 2)
        :return: (batch_size, 1, heatmap_size, heatmap_size)
        """

        paired_joints = torch.stack([keypoints[:, self.skeleton_idx[0], :2], keypoints[:, self.skeleton_idx[1], :2]], dim=2)

        skeleton_scalar = F.softplus(self.skeleton_scalar * self.sklr)
        skeleton_scalar = torch.triu(skeleton_scalar, diagonal=1)
        skeleton_scalar = skeleton_scalar[self.skeleton_idx[0], self.skeleton_idx[1]].reshape(1, self.n_skeleton, 1, 1)

        skeleton_heatmap_sep = draw_lines(paired_joints, heatmap_size=output_size, thick=self.thick)
        skeleton_heatmap_sep = skeleton_heatmap_sep * skeleton_scalar.reshape(1, self.n_skeleton, 1, 1)
        skeleton_heatmap = skeleton_heatmap_sep.max(dim=1, keepdim=True)[0]
        return skeleton_heatmap

    def forward(self, input_dict: dict) -> dict:
        skeleton_heatmap = self.rasterize(input_dict['keypoints'])

        x = torch.cat([input_dict['damaged_img'] * self.alpha, skeleton_heatmap], dim=1)

        down_128 = self.down0(x)
        down_64 = self.down1(down_128)
        down_32 = self.down2(down_64)
        down_16 = self.down3(down_32)
        down_8 = self.down4(down_16)
        up_8 = down_8
        up_16 = torch.cat([self.up1(up_8), down_16], dim=1)
        up_32 = torch.cat([self.up2(up_16), down_32], dim=1)
        up_64 = torch.cat([self.up3(up_32), down_64], dim=1)
        up_128 = torch.cat([self.up4(up_64), down_128], dim=1)
        img = self.conv(up_128)

        input_dict['heatmap'] = skeleton_heatmap
        input_dict['img'] = img
        return input_dict


if __name__ == '__main__':
    model = Decoder({'z_dim': 256, 'n_parts': 10, 'n_embedding': 128, 'tau': 0.01})
    print(sum(p.numel() for p in model.parameters() if p.requires_grad))