from transformers import AutoFeatureExtractor, AutoModelForObjectDetection import torch from config import MODEL_NAME class RadarDetectionModel: def __init__(self): self.feature_extractor = AutoFeatureExtractor.from_pretrained( "google/paligemma-3b-ft-coco35l-224") self.model = AutoModelForObjectDetection.from_pretrained( "google/paligemma-3b-ft-coco35l-224") self.model.eval() @torch.no_grad() def detect(self, image): inputs = self.feature_extractor(images=image, return_tensors="pt") outputs = self.model(**inputs) target_sizes = torch.tensor([image.size[::-1]]) results = self.feature_extractor.post_process_object_detection( outputs, threshold=0.5, target_sizes=target_sizes)[0] return results