Spaces:
Running
Running
Synced repo using 'sync_with_huggingface' Github Action
Browse files- app.py +1 -1
- gradio_app.py +147 -62
- requirements.txt +5 -4
app.py
CHANGED
@@ -6,7 +6,7 @@ import subprocess
|
|
6 |
from huggingface_hub import hf_hub_download
|
7 |
|
8 |
REPO_URL = "https://github.com/facebookresearch/videoseal.git"
|
9 |
-
REPO_BRANCH = '
|
10 |
LOCAL_PATH = "./videoseal"
|
11 |
|
12 |
def install_src():
|
|
|
6 |
from huggingface_hub import hf_hub_download
|
7 |
|
8 |
REPO_URL = "https://github.com/facebookresearch/videoseal.git"
|
9 |
+
REPO_BRANCH = '3de6b246bd160240c0b45790bb9b3a797eb7583a'
|
10 |
LOCAL_PATH = "./videoseal"
|
11 |
|
12 |
def install_src():
|
gradio_app.py
CHANGED
@@ -28,14 +28,22 @@ import videoseal
|
|
28 |
from videoseal.utils.display import save_video_audio_to_mp4
|
29 |
|
30 |
# Load video_model if not already loaded in reload mode
|
31 |
-
if '
|
32 |
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
33 |
|
34 |
-
|
35 |
-
|
|
|
|
|
36 |
video_model.eval()
|
37 |
video_model.to(device)
|
38 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
39 |
|
40 |
# Load the AudioSeal model
|
41 |
# Load audio_generator if not already loaded in reload mode
|
@@ -49,6 +57,10 @@ if 'audio_detector' not in globals():
|
|
49 |
audio_detector = AudioSeal.load_detector("audioseal_detector_16bits")
|
50 |
audio_detector = audio_detector.to(device)
|
51 |
|
|
|
|
|
|
|
|
|
52 |
def generate_msg_pt_by_format_string(format_string, bytes_count):
|
53 |
msg_hex = format_string.replace("-", "")
|
54 |
hex_length = bytes_count * 2
|
@@ -345,8 +357,9 @@ def embed_audio(
|
|
345 |
# print(stderr_output2)
|
346 |
return
|
347 |
|
348 |
-
def embed_watermark(input_path, output_path, msg_v, msg_a, video_only, progress):
|
349 |
output_path_video = output_path + ".video.mp4"
|
|
|
350 |
embed_video(video_model, input_path, output_path_video, msg_v, 16)
|
351 |
|
352 |
output_path_audio = output_path + ".audio.m4a"
|
@@ -378,6 +391,7 @@ def detect_video_clip(
|
|
378 |
|
379 |
def detect_video(
|
380 |
model,
|
|
|
381 |
input_path: str,
|
382 |
chunk_size: int
|
383 |
) -> None:
|
@@ -402,7 +416,7 @@ def detect_video(
|
|
402 |
chunk = np.zeros((chunk_size, height, width, 3), dtype=np.uint8)
|
403 |
frame_count = 0
|
404 |
soft_msgs = []
|
405 |
-
pbar = tqdm.tqdm(total=num_frames, unit='frame', desc="Watermark video detecting")
|
406 |
while True:
|
407 |
in_bytes = process1.stdout.read(frame_size)
|
408 |
if not in_bytes:
|
@@ -521,16 +535,25 @@ def detect_audio(
|
|
521 |
soft_message_prob = torch.cat(soft_message_prob, dim=0)
|
522 |
return (soft_result, soft_message, soft_pred_prob, soft_message_prob)
|
523 |
|
524 |
-
def detect_watermark(input_path, video_only):
|
525 |
-
|
526 |
-
msgs_v_avg =
|
527 |
-
msgs_v_frame =
|
528 |
-
|
529 |
-
|
530 |
-
|
531 |
-
|
532 |
-
|
533 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
534 |
|
535 |
msgs_a_most = msgs_a_res = msgs_a_frame = msgs_a_pred = msgs_a_prob = None
|
536 |
if not video_only:
|
@@ -549,7 +572,7 @@ def detect_watermark(input_path, video_only):
|
|
549 |
with gr.Blocks(title="VideoSeal") as demo:
|
550 |
gr.Markdown("""
|
551 |
# VideoSeal Demo
|
552 |
-
|
553 |
For video, each frame will be watermarked and detected.
|
554 |
For audio, each 3 seconds will be watermarked, and each second will be detected.
|
555 |
|
@@ -570,7 +593,8 @@ with gr.Blocks(title="VideoSeal") as demo:
|
|
570 |
with gr.Column():
|
571 |
embedding_type = gr.Radio(["random", "input"], value="random", label="Type", info="Type of watermarks")
|
572 |
|
573 |
-
|
|
|
574 |
msg_v, _ = generate_hex_random_message(video_model_nbytes)
|
575 |
embedding_msg_v = gr.Textbox(
|
576 |
label=f"Message ({video_model_nbytes} bytes hex string)",
|
@@ -578,42 +602,64 @@ with gr.Blocks(title="VideoSeal") as demo:
|
|
578 |
value=msg_v,
|
579 |
interactive=False, show_copy_button=True)
|
580 |
with gr.Column():
|
581 |
-
|
582 |
-
|
583 |
-
|
584 |
-
|
585 |
-
|
586 |
-
|
587 |
-
|
588 |
-
|
589 |
-
|
590 |
-
|
|
|
591 |
embedding_btn = gr.Button("Embed Watermark")
|
592 |
with gr.Column():
|
593 |
marked_vid = gr.Video(label="Output Audio", show_download_button=True)
|
594 |
|
595 |
-
def
|
596 |
return gr.update(visible=not video_only)
|
597 |
embedding_only_vid.change(
|
598 |
-
fn=
|
599 |
inputs=[embedding_only_vid],
|
600 |
-
outputs=[embedding_msg_a]
|
|
|
601 |
)
|
602 |
|
603 |
-
def
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
604 |
if type == "random":
|
|
|
605 |
msg_v, _ = generate_hex_random_message(video_model_nbytes)
|
606 |
-
msg_a,_ = generate_hex_random_message(audio_generator_nbytes)
|
607 |
return [gr.update(interactive=False, value=msg_v),gr.update(interactive=False, value=msg_a)]
|
608 |
else:
|
609 |
return [gr.update(interactive=True),gr.update(interactive=True)]
|
610 |
embedding_type.change(
|
611 |
fn=change_embedding_type,
|
612 |
-
inputs=[embedding_type],
|
613 |
-
outputs=[embedding_msg_v, embedding_msg_a]
|
|
|
614 |
)
|
615 |
|
616 |
-
def check_embedding_msg(msg_v, msg_a):
|
|
|
|
|
|
|
617 |
if not re.match(regex_pattern_v, msg_v):
|
618 |
gr.Warning(
|
619 |
f"Invalid format. Please use like '{format_like_v}'",
|
@@ -624,17 +670,36 @@ with gr.Blocks(title="VideoSeal") as demo:
|
|
624 |
duration=0)
|
625 |
embedding_msg_v.change(
|
626 |
fn=check_embedding_msg,
|
627 |
-
inputs=[embedding_msg_v, embedding_msg_a],
|
628 |
-
outputs=[]
|
|
|
629 |
)
|
630 |
embedding_msg_a.change(
|
631 |
fn=check_embedding_msg,
|
632 |
inputs=[embedding_msg_v, embedding_msg_a],
|
633 |
-
outputs=[]
|
|
|
634 |
)
|
635 |
|
636 |
-
def run_embed_watermark(
|
637 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
638 |
raise gr.Error("No file uploaded", duration=5)
|
639 |
if not re.match(regex_pattern_v, msg_v):
|
640 |
raise gr.Error(f"Invalid format. Please use like '{format_like_v}'", duration=5)
|
@@ -645,15 +710,15 @@ with gr.Blocks(title="VideoSeal") as demo:
|
|
645 |
msg_pt_a = generate_msg_pt_by_format_string(msg_a, audio_generator_nbytes)
|
646 |
|
647 |
if video_only:
|
648 |
-
output_path = os.path.join(os.path.dirname(
|
649 |
else:
|
650 |
-
output_path = os.path.join(os.path.dirname(
|
651 |
-
embed_watermark(
|
652 |
|
653 |
return output_path
|
654 |
embedding_btn.click(
|
655 |
fn=run_embed_watermark,
|
656 |
-
inputs=[embedding_vid, embedding_only_vid, embedding_msg_v, embedding_msg_a],
|
657 |
outputs=[marked_vid]
|
658 |
)
|
659 |
|
@@ -661,28 +726,48 @@ with gr.Blocks(title="VideoSeal") as demo:
|
|
661 |
with gr.Row():
|
662 |
with gr.Column():
|
663 |
detecting_vid = gr.Video(label="Input Video")
|
664 |
-
|
|
|
|
|
665 |
detecting_btn = gr.Button("Detect Watermark")
|
666 |
with gr.Column():
|
667 |
predicted_messages = gr.JSON(label="Detected Messages")
|
668 |
|
669 |
-
def run_detect_watermark(file, video_only, progress=gr.Progress(track_tqdm=True)):
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
670 |
if file is None:
|
671 |
raise gr.Error("No file uploaded", duration=5)
|
672 |
|
673 |
-
msgs_v_most, msgs_v_avg, msgs_v_frame, msgs_a_most, msgs_a_res, msgs_a_frame, msgs_a_pred, msgs_a_prob = detect_watermark(file, video_only)
|
674 |
-
|
675 |
-
|
676 |
-
_,
|
677 |
-
|
678 |
-
|
679 |
-
|
680 |
-
|
681 |
-
|
682 |
-
|
683 |
-
|
684 |
-
|
685 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
686 |
|
687 |
if msgs_a_res is None:
|
688 |
audio_json = None
|
@@ -714,9 +799,9 @@ with gr.Blocks(title="VideoSeal") as demo:
|
|
714 |
return message_json
|
715 |
detecting_btn.click(
|
716 |
fn=run_detect_watermark,
|
717 |
-
inputs=[detecting_vid, detecting_only_vid],
|
718 |
outputs=[predicted_messages]
|
719 |
)
|
720 |
|
721 |
if __name__ == "__main__":
|
722 |
-
demo.launch()
|
|
|
28 |
from videoseal.utils.display import save_video_audio_to_mp4
|
29 |
|
30 |
# Load video_model if not already loaded in reload mode
|
31 |
+
if 'video_models' not in globals():
|
32 |
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
33 |
|
34 |
+
video_models = {}
|
35 |
+
|
36 |
+
# Load the VideoSeal model 1.0
|
37 |
+
video_model = videoseal.load("videoseal_1.0")
|
38 |
video_model.eval()
|
39 |
video_model.to(device)
|
40 |
+
video_models['1.0'] = video_model
|
41 |
+
|
42 |
+
# Load the VideoSeal model 0.0
|
43 |
+
video_model = videoseal.load("videoseal_0.0")
|
44 |
+
video_model.eval()
|
45 |
+
video_model.to(device)
|
46 |
+
video_models['0.0'] = video_model
|
47 |
|
48 |
# Load the AudioSeal model
|
49 |
# Load audio_generator if not already loaded in reload mode
|
|
|
57 |
audio_detector = AudioSeal.load_detector("audioseal_detector_16bits")
|
58 |
audio_detector = audio_detector.to(device)
|
59 |
|
60 |
+
def get_model_nbytes(model_version):
|
61 |
+
video_model = video_models[model_version]
|
62 |
+
return int(video_model.embedder.msg_processor.nbits / 8)
|
63 |
+
|
64 |
def generate_msg_pt_by_format_string(format_string, bytes_count):
|
65 |
msg_hex = format_string.replace("-", "")
|
66 |
hex_length = bytes_count * 2
|
|
|
357 |
# print(stderr_output2)
|
358 |
return
|
359 |
|
360 |
+
def embed_watermark(input_path, model_version, output_path, msg_v, msg_a, video_only, progress):
|
361 |
output_path_video = output_path + ".video.mp4"
|
362 |
+
video_model = video_models[model_version]
|
363 |
embed_video(video_model, input_path, output_path_video, msg_v, 16)
|
364 |
|
365 |
output_path_audio = output_path + ".audio.m4a"
|
|
|
391 |
|
392 |
def detect_video(
|
393 |
model,
|
394 |
+
version: str,
|
395 |
input_path: str,
|
396 |
chunk_size: int
|
397 |
) -> None:
|
|
|
416 |
chunk = np.zeros((chunk_size, height, width, 3), dtype=np.uint8)
|
417 |
frame_count = 0
|
418 |
soft_msgs = []
|
419 |
+
pbar = tqdm.tqdm(total=num_frames, unit='frame', desc=f"{version}: Watermark video detecting")
|
420 |
while True:
|
421 |
in_bytes = process1.stdout.read(frame_size)
|
422 |
if not in_bytes:
|
|
|
535 |
soft_message_prob = torch.cat(soft_message_prob, dim=0)
|
536 |
return (soft_result, soft_message, soft_pred_prob, soft_message_prob)
|
537 |
|
538 |
+
def detect_watermark(input_path, version_keys, video_only):
|
539 |
+
msgs_v_most = {}
|
540 |
+
msgs_v_avg = {}
|
541 |
+
msgs_v_frame = {}
|
542 |
+
for video_version, video_model in video_models.items():
|
543 |
+
if video_version not in version_keys:
|
544 |
+
continue
|
545 |
+
version_msgs_v_frame = detect_video(video_model, video_version, input_path, 16)
|
546 |
+
version_msgs_v_frame = (version_msgs_v_frame > 0).to(int)
|
547 |
+
version_msgs_v_avg = (version_msgs_v_frame.to(torch.float32).mean(dim=0) > 0).to(int)
|
548 |
+
version_msgs_v_most = None
|
549 |
+
version_msgs_v_unique, version_msgs_v_counts = torch.unique(version_msgs_v_frame, dim=0, return_counts=True)
|
550 |
+
if len(version_msgs_v_frame) > len(version_msgs_v_counts) > 0:
|
551 |
+
version_msgs_v_most_idx = torch.argmax(version_msgs_v_counts)
|
552 |
+
version_msgs_v_most = version_msgs_v_unique[version_msgs_v_most_idx]
|
553 |
+
|
554 |
+
msgs_v_most[video_version] = version_msgs_v_most
|
555 |
+
msgs_v_avg[video_version] = version_msgs_v_avg
|
556 |
+
msgs_v_frame[video_version] = version_msgs_v_frame
|
557 |
|
558 |
msgs_a_most = msgs_a_res = msgs_a_frame = msgs_a_pred = msgs_a_prob = None
|
559 |
if not video_only:
|
|
|
572 |
with gr.Blocks(title="VideoSeal") as demo:
|
573 |
gr.Markdown("""
|
574 |
# VideoSeal Demo
|
575 |
+

|
576 |
For video, each frame will be watermarked and detected.
|
577 |
For audio, each 3 seconds will be watermarked, and each second will be detected.
|
578 |
|
|
|
593 |
with gr.Column():
|
594 |
embedding_type = gr.Radio(["random", "input"], value="random", label="Type", info="Type of watermarks")
|
595 |
|
596 |
+
video_model_nbytes = get_model_nbytes(list(video_models.keys())[0])
|
597 |
+
format_like_v, _ = generate_hex_format_regex(video_model_nbytes)
|
598 |
msg_v, _ = generate_hex_random_message(video_model_nbytes)
|
599 |
embedding_msg_v = gr.Textbox(
|
600 |
label=f"Message ({video_model_nbytes} bytes hex string)",
|
|
|
602 |
value=msg_v,
|
603 |
interactive=False, show_copy_button=True)
|
604 |
with gr.Column():
|
605 |
+
embedding_version = gr.Dropdown(video_models.keys(), label="Model version", interactive=True)
|
606 |
+
with gr.Column():
|
607 |
+
embedding_only_vid = gr.Checkbox(label="Only Video", value=False)
|
608 |
+
|
609 |
+
format_like_a, _ = generate_hex_format_regex(audio_generator_nbytes)
|
610 |
+
msg_a, _ = generate_hex_random_message(audio_generator_nbytes)
|
611 |
+
embedding_msg_a = gr.Textbox(
|
612 |
+
label=f"Audio Message ({audio_generator_nbytes} bytes hex string)",
|
613 |
+
info=f"format like {format_like_a}",
|
614 |
+
value=msg_a,
|
615 |
+
interactive=False, show_copy_button=True)
|
616 |
embedding_btn = gr.Button("Embed Watermark")
|
617 |
with gr.Column():
|
618 |
marked_vid = gr.Video(label="Output Audio", show_download_button=True)
|
619 |
|
620 |
+
def change_embedding_silent(video_only):
|
621 |
return gr.update(visible=not video_only)
|
622 |
embedding_only_vid.change(
|
623 |
+
fn=change_embedding_silent,
|
624 |
inputs=[embedding_only_vid],
|
625 |
+
outputs=[embedding_msg_a],
|
626 |
+
api_name=False
|
627 |
)
|
628 |
|
629 |
+
def change_embedding_version(version):
|
630 |
+
video_model_nbytes = get_model_nbytes(version)
|
631 |
+
format_like_v, _ = generate_hex_format_regex(video_model_nbytes)
|
632 |
+
msg_v, _ = generate_hex_random_message(video_model_nbytes)
|
633 |
+
return gr.update(
|
634 |
+
label=f"Message ({video_model_nbytes} bytes hex string)",
|
635 |
+
info=f"format like {format_like_v}",
|
636 |
+
value=msg_v)
|
637 |
+
embedding_version.change(
|
638 |
+
fn=change_embedding_version,
|
639 |
+
inputs=[embedding_version],
|
640 |
+
outputs=[embedding_msg_v],
|
641 |
+
api_name=False
|
642 |
+
)
|
643 |
+
|
644 |
+
def change_embedding_type(type, version):
|
645 |
if type == "random":
|
646 |
+
video_model_nbytes = get_model_nbytes(version)
|
647 |
msg_v, _ = generate_hex_random_message(video_model_nbytes)
|
648 |
+
msg_a, _ = generate_hex_random_message(audio_generator_nbytes)
|
649 |
return [gr.update(interactive=False, value=msg_v),gr.update(interactive=False, value=msg_a)]
|
650 |
else:
|
651 |
return [gr.update(interactive=True),gr.update(interactive=True)]
|
652 |
embedding_type.change(
|
653 |
fn=change_embedding_type,
|
654 |
+
inputs=[embedding_type, embedding_version],
|
655 |
+
outputs=[embedding_msg_v, embedding_msg_a],
|
656 |
+
api_name=False
|
657 |
)
|
658 |
|
659 |
+
def check_embedding_msg(version_v, msg_v, msg_a):
|
660 |
+
video_model_nbytes = get_model_nbytes(version_v)
|
661 |
+
_, regex_pattern_v = generate_hex_format_regex(video_model_nbytes)
|
662 |
+
_, regex_pattern_a = generate_hex_format_regex(audio_generator_nbytes)
|
663 |
if not re.match(regex_pattern_v, msg_v):
|
664 |
gr.Warning(
|
665 |
f"Invalid format. Please use like '{format_like_v}'",
|
|
|
670 |
duration=0)
|
671 |
embedding_msg_v.change(
|
672 |
fn=check_embedding_msg,
|
673 |
+
inputs=[embedding_version, embedding_msg_v, embedding_msg_a],
|
674 |
+
outputs=[],
|
675 |
+
api_name=False
|
676 |
)
|
677 |
embedding_msg_a.change(
|
678 |
fn=check_embedding_msg,
|
679 |
inputs=[embedding_msg_v, embedding_msg_a],
|
680 |
+
outputs=[],
|
681 |
+
api_name=False
|
682 |
)
|
683 |
|
684 |
+
def run_embed_watermark(file, model_version, video_only, msg_v, msg_a, progress=gr.Progress(track_tqdm=True)):
|
685 |
+
"""
|
686 |
+
Embeds a watermark into the given video file using the specified model.
|
687 |
+
|
688 |
+
Args:
|
689 |
+
file (str): Path to the input video file.
|
690 |
+
model_version (str): Identifier for the video model version or checkpoint used for embedding.
|
691 |
+
video_only (bool): If True, embeds watermark only in the video stream; audio is ignored.
|
692 |
+
msg_v (str): A 12- or 32-byte hexadecimal string to embed as a watermark in the video stream (e.g., "FFFF").
|
693 |
+
msg_a (str): A 2-byte hexadecimal string to embed as a watermark in the audio stream (e.g., "FFFF").
|
694 |
+
progress (gr.Progress, optional): Gradio progress tracker for monitoring embedding progress. Defaults to tracking tqdm.
|
695 |
+
|
696 |
+
Returns:
|
697 |
+
str: File path to the watermarked output video file.
|
698 |
+
"""
|
699 |
+
video_model_nbytes = get_model_nbytes(model_version)
|
700 |
+
_, regex_pattern_v = generate_hex_format_regex(video_model_nbytes)
|
701 |
+
_, regex_pattern_a = generate_hex_format_regex(audio_generator_nbytes)
|
702 |
+
if file is None:
|
703 |
raise gr.Error("No file uploaded", duration=5)
|
704 |
if not re.match(regex_pattern_v, msg_v):
|
705 |
raise gr.Error(f"Invalid format. Please use like '{format_like_v}'", duration=5)
|
|
|
710 |
msg_pt_a = generate_msg_pt_by_format_string(msg_a, audio_generator_nbytes)
|
711 |
|
712 |
if video_only:
|
713 |
+
output_path = os.path.join(os.path.dirname(file), "__".join([msg_v]) + '.mp4')
|
714 |
else:
|
715 |
+
output_path = os.path.join(os.path.dirname(file), "__".join([msg_v, msg_a]) + '.mp4')
|
716 |
+
embed_watermark(file, model_version, output_path, msg_pt_v, msg_pt_a, video_only, progress)
|
717 |
|
718 |
return output_path
|
719 |
embedding_btn.click(
|
720 |
fn=run_embed_watermark,
|
721 |
+
inputs=[embedding_vid, embedding_version, embedding_only_vid, embedding_msg_v, embedding_msg_a],
|
722 |
outputs=[marked_vid]
|
723 |
)
|
724 |
|
|
|
726 |
with gr.Row():
|
727 |
with gr.Column():
|
728 |
detecting_vid = gr.Video(label="Input Video")
|
729 |
+
with gr.Row():
|
730 |
+
detecting_model_dd = gr.Dropdown(video_models.keys(), value=list(video_models.keys()), multiselect=True, label="Model version", interactive=True)
|
731 |
+
detecting_only_vid = gr.Checkbox(label="Only Video", value=False)
|
732 |
detecting_btn = gr.Button("Detect Watermark")
|
733 |
with gr.Column():
|
734 |
predicted_messages = gr.JSON(label="Detected Messages")
|
735 |
|
736 |
+
def run_detect_watermark(file, model_versions, video_only, progress=gr.Progress(track_tqdm=True)):
|
737 |
+
"""
|
738 |
+
Detects a watermark in the given video file using specified model versions.
|
739 |
+
|
740 |
+
Args:
|
741 |
+
file (str): Path to the input video file.
|
742 |
+
model_versions (List[str]): List of model version identifiers (e.g., checkpoint versions) to use for detection.
|
743 |
+
video_only (bool): If True, only the video stream is considered; audio is ignored.
|
744 |
+
progress (gr.Progress, optional): Gradio Progress tracker for visualizing progress. Defaults to tracking tqdm.
|
745 |
+
|
746 |
+
Returns:
|
747 |
+
str: A Markdown-formatted string containing the detection results.
|
748 |
+
"""
|
749 |
if file is None:
|
750 |
raise gr.Error("No file uploaded", duration=5)
|
751 |
|
752 |
+
msgs_v_most, msgs_v_avg, msgs_v_frame, msgs_a_most, msgs_a_res, msgs_a_frame, msgs_a_pred, msgs_a_prob = detect_watermark(file, model_versions, video_only)
|
753 |
+
|
754 |
+
video_json = {}
|
755 |
+
for (version_name, version_msgs_v_most), (_, version_msgs_v_avg), (_, version_msgs_v_frame) in zip(msgs_v_most.items(), msgs_v_avg.items(), msgs_v_frame.items()):
|
756 |
+
if version_name not in model_versions:
|
757 |
+
continue
|
758 |
+
|
759 |
+
video_model_nbytes = get_model_nbytes(version_name)
|
760 |
+
_, format_msg_v_most = generate_format_string_by_msg_pt(version_msgs_v_most, video_model_nbytes)
|
761 |
+
_, format_msg_v_avg = generate_format_string_by_msg_pt(version_msgs_v_avg, video_model_nbytes)
|
762 |
+
format_msg_v_frames = {}
|
763 |
+
for idx, msg in enumerate(version_msgs_v_frame):
|
764 |
+
_, format_msg = generate_format_string_by_msg_pt(msg, video_model_nbytes)
|
765 |
+
format_msg_v_frames[f"{idx}"] = format_msg
|
766 |
+
video_json[version_name] = {
|
767 |
+
"most": format_msg_v_most,
|
768 |
+
"avg": format_msg_v_avg,
|
769 |
+
"frames": format_msg_v_frames
|
770 |
+
}
|
771 |
|
772 |
if msgs_a_res is None:
|
773 |
audio_json = None
|
|
|
799 |
return message_json
|
800 |
detecting_btn.click(
|
801 |
fn=run_detect_watermark,
|
802 |
+
inputs=[detecting_vid, detecting_model_dd, detecting_only_vid],
|
803 |
outputs=[predicted_messages]
|
804 |
)
|
805 |
|
806 |
if __name__ == "__main__":
|
807 |
+
demo.launch(server_name="0.0.0.0", server_port=7860, mcp_server=True, ssr_mode=False)
|
requirements.txt
CHANGED
@@ -1,10 +1,11 @@
|
|
1 |
torch==2.5.1
|
2 |
-
gradio==5.
|
3 |
GitPython==3.1.43
|
4 |
-
huggingface-hub==0.
|
5 |
audioseal==0.1.4
|
6 |
matplotlib==3.10.0
|
7 |
soundfile==0.12.1
|
8 |
torchaudio==2.5.1
|
9 |
-
|
10 |
-
pydantic
|
|
|
|
1 |
torch==2.5.1
|
2 |
+
gradio[mcp]==5.28.0
|
3 |
GitPython==3.1.43
|
4 |
+
huggingface-hub==0.28.1
|
5 |
audioseal==0.1.4
|
6 |
matplotlib==3.10.0
|
7 |
soundfile==0.12.1
|
8 |
torchaudio==2.5.1
|
9 |
+
|
10 |
+
# gradio[mcp] 5.28.0 depends on pydantic>=2.11
|
11 |
+
pydantic==2.11.4
|