Spaces:
Running
Running
xiaoyao9184
commited on
Synced repo using 'sync_with_huggingface' Github Action
Browse files- app.py +38 -0
- gradio_app.py +385 -0
- gradio_run.py +7 -0
- requirements.txt +7 -0
app.py
ADDED
@@ -0,0 +1,38 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import os
|
2 |
+
import sys
|
3 |
+
import git
|
4 |
+
import subprocess
|
5 |
+
from huggingface_hub import hf_hub_download
|
6 |
+
|
7 |
+
REPO_URL = "https://github.com/facebookresearch/videoseal.git"
|
8 |
+
REPO_BRANCH = '5897ac50b5b0f5c806f42d2f7d1ef208a0780a28'
|
9 |
+
LOCAL_PATH = "./videoseal"
|
10 |
+
|
11 |
+
def install_src():
|
12 |
+
if not os.path.exists(LOCAL_PATH):
|
13 |
+
print(f"Cloning repository from {REPO_URL}...")
|
14 |
+
repo = git.Repo.clone_from(REPO_URL, LOCAL_PATH)
|
15 |
+
repo.git.checkout(REPO_BRANCH)
|
16 |
+
else:
|
17 |
+
print(f"Repository already exists at {LOCAL_PATH}")
|
18 |
+
|
19 |
+
requirements_path = os.path.join(LOCAL_PATH, "requirements.txt")
|
20 |
+
if os.path.exists(requirements_path):
|
21 |
+
print("Installing requirements...")
|
22 |
+
subprocess.check_call(["pip", "install", "-r", requirements_path])
|
23 |
+
else:
|
24 |
+
print("No requirements.txt found.")
|
25 |
+
|
26 |
+
# clone repo
|
27 |
+
install_src()
|
28 |
+
|
29 |
+
# change directory
|
30 |
+
print(f"Current Directory: {os.getcwd()}")
|
31 |
+
os.chdir(LOCAL_PATH)
|
32 |
+
print(f"New Directory: {os.getcwd()}")
|
33 |
+
|
34 |
+
# fix sys.path for import
|
35 |
+
sys.path.append(os.getcwd())
|
36 |
+
|
37 |
+
# run gradio
|
38 |
+
import gradio_app
|
gradio_app.py
ADDED
@@ -0,0 +1,385 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import os
|
2 |
+
import sys
|
3 |
+
|
4 |
+
if "APP_PATH" in os.environ:
|
5 |
+
app_path = os.path.abspath(os.environ["APP_PATH"])
|
6 |
+
if os.getcwd() != app_path:
|
7 |
+
# fix sys.path for import
|
8 |
+
os.chdir(app_path)
|
9 |
+
if app_path not in sys.path:
|
10 |
+
sys.path.append(app_path)
|
11 |
+
|
12 |
+
import gradio as gr
|
13 |
+
|
14 |
+
import torch
|
15 |
+
import torchaudio
|
16 |
+
import torchvision
|
17 |
+
import matplotlib.pyplot as plt
|
18 |
+
import re
|
19 |
+
import random
|
20 |
+
import string
|
21 |
+
from audioseal import AudioSeal
|
22 |
+
import videoseal
|
23 |
+
from videoseal.utils.display import save_video_audio_to_mp4
|
24 |
+
|
25 |
+
# Load video_model if not already loaded in reload mode
|
26 |
+
if 'video_model' not in globals():
|
27 |
+
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
28 |
+
|
29 |
+
# Load the VideoSeal model
|
30 |
+
video_model = videoseal.load("videoseal")
|
31 |
+
video_model.eval()
|
32 |
+
video_model.to(device)
|
33 |
+
video_model_nbytes = int(video_model.embedder.msg_processor.nbits / 8)
|
34 |
+
|
35 |
+
# Load the AudioSeal model
|
36 |
+
# Load audio_generator if not already loaded in reload mode
|
37 |
+
if 'audio_generator' not in globals():
|
38 |
+
audio_generator = AudioSeal.load_generator("audioseal_wm_16bits")
|
39 |
+
audio_generator = audio_generator.to(device)
|
40 |
+
audio_generator_nbytes = int(audio_generator.msg_processor.nbits / 8)
|
41 |
+
|
42 |
+
# Load audio_detector if not already loaded in reload mode
|
43 |
+
if 'audio_detector' not in globals():
|
44 |
+
audio_detector = AudioSeal.load_detector("audioseal_detector_16bits")
|
45 |
+
audio_detector = audio_detector.to(device)
|
46 |
+
|
47 |
+
|
48 |
+
def load_video(file):
|
49 |
+
# Read the video and convert to tensor format
|
50 |
+
video, audio, info = torchvision.io.read_video(file, output_format="TCHW", pts_unit="sec")
|
51 |
+
assert "audio_fps" in info, "The input video must contain an audio track. Simply refer to the main videoseal inference code if not."
|
52 |
+
|
53 |
+
# Normalize the video frames to the range [0, 1]
|
54 |
+
# audio = audio.float()
|
55 |
+
# video = video.float() / 255.0
|
56 |
+
|
57 |
+
# Normalize the video frames to the range [0, 1] and trim to 3 second
|
58 |
+
fps = 24
|
59 |
+
video = video[:fps * 3].float() / 255.0
|
60 |
+
|
61 |
+
sample_rate = info["audio_fps"]
|
62 |
+
audio = audio[:, :int(sample_rate * 3)].float()
|
63 |
+
|
64 |
+
return video, info["video_fps"], audio, info["audio_fps"]
|
65 |
+
|
66 |
+
def generate_msg_pt_by_format_string(format_string, bytes_count):
|
67 |
+
msg_hex = format_string.replace("-", "")
|
68 |
+
hex_length = bytes_count * 2
|
69 |
+
binary_list = []
|
70 |
+
for i in range(0, len(msg_hex), hex_length):
|
71 |
+
chunk = msg_hex[i:i+hex_length]
|
72 |
+
binary = bin(int(chunk, 16))[2:].zfill(bytes_count * 8)
|
73 |
+
binary_list.append([int(b) for b in binary])
|
74 |
+
# torch.randint(0, 2, (1, 16), dtype=torch.int32)
|
75 |
+
msg_pt = torch.tensor(binary_list, dtype=torch.int32)
|
76 |
+
return msg_pt.to(device)
|
77 |
+
|
78 |
+
def embed_watermark(output_file, msg_v, msg_a, video_only, video, fps, audio, sample_rate):
|
79 |
+
# Perform watermark embedding on video
|
80 |
+
with torch.no_grad():
|
81 |
+
outputs = video_model.embed(video, is_video=True, msgs=msg_v)
|
82 |
+
|
83 |
+
# Extract the results
|
84 |
+
video_w = outputs["imgs_w"] # Watermarked video frames
|
85 |
+
video_msgs = outputs["msgs"] # Watermark messages
|
86 |
+
|
87 |
+
if not video_only:
|
88 |
+
# Resample the audio to 16kHz for watermarking
|
89 |
+
audio_16k = torchaudio.transforms.Resample(sample_rate, 16000)(audio)
|
90 |
+
|
91 |
+
# If the audio has more than one channel, average all channels to 1 channel
|
92 |
+
if audio_16k.shape[0] > 1:
|
93 |
+
audio_16k_mono = torch.mean(audio_16k, dim=0, keepdim=True)
|
94 |
+
else:
|
95 |
+
audio_16k_mono = audio_16k
|
96 |
+
|
97 |
+
# Add batch dimension to the audio tensor
|
98 |
+
audio_16k_mono_batched = audio_16k_mono.unsqueeze(0).to(device)
|
99 |
+
|
100 |
+
# Get the watermark for the audio
|
101 |
+
with torch.no_grad():
|
102 |
+
watermark = audio_generator.get_watermark(
|
103 |
+
audio_16k_mono_batched, 16000, message=msg_a
|
104 |
+
)
|
105 |
+
|
106 |
+
# Embed the watermark in the audio
|
107 |
+
audio_16k_w = audio_16k_mono_batched + watermark
|
108 |
+
|
109 |
+
# Remove batch dimension from the watermarked audio tensor
|
110 |
+
audio_16k_w = audio_16k_w.squeeze(0)
|
111 |
+
|
112 |
+
# If the original audio had more than one channel, duplicate the watermarked audio to all channels
|
113 |
+
if audio_16k.shape[0] > 1:
|
114 |
+
audio_16k_w = audio_16k_w.repeat(audio_16k.shape[0], 1)
|
115 |
+
|
116 |
+
# Resample the watermarked audio back to the original sample rate
|
117 |
+
audio_w = torchaudio.transforms.Resample(16000, sample_rate).to(device)(audio_16k_w)
|
118 |
+
else:
|
119 |
+
audio_w = audio
|
120 |
+
|
121 |
+
# for Incompatible pixel format 'rgb24' for codec 'libx264', auto-selecting format 'yuv444p'
|
122 |
+
video_w = video_w.flip(1)
|
123 |
+
|
124 |
+
# Save the watermarked video and audio
|
125 |
+
save_video_audio_to_mp4(
|
126 |
+
video_tensor=video_w,
|
127 |
+
audio_tensor=audio_w,
|
128 |
+
fps=int(fps),
|
129 |
+
audio_sample_rate=int(sample_rate),
|
130 |
+
output_filename=output_file,
|
131 |
+
)
|
132 |
+
|
133 |
+
print(f"encoded message: \n Audio: {msg_a} \n Video {video_msgs[0]}")
|
134 |
+
|
135 |
+
return video_w, audio_w
|
136 |
+
|
137 |
+
def generate_format_string_by_msg_pt(msg_pt, bytes_count):
|
138 |
+
hex_length = bytes_count * 2
|
139 |
+
binary_int = 0
|
140 |
+
for bit in msg_pt:
|
141 |
+
binary_int = (binary_int << 1) | int(bit.item())
|
142 |
+
hex_string = format(binary_int, f'0{hex_length}x')
|
143 |
+
|
144 |
+
split_hex = [hex_string[i:i + 4] for i in range(0, len(hex_string), 4)]
|
145 |
+
format_hex = "-".join(split_hex)
|
146 |
+
|
147 |
+
return hex_string, format_hex
|
148 |
+
|
149 |
+
def detect_watermark(video_only, video, audio, sample_rate):
|
150 |
+
# Detect watermarks in the video
|
151 |
+
with torch.no_grad():
|
152 |
+
msg_extracted = video_model.extract_message(video)
|
153 |
+
|
154 |
+
print(f"Extracted message from video: {msg_extracted}")
|
155 |
+
|
156 |
+
if not video_only:
|
157 |
+
if len(audio.shape) == 2:
|
158 |
+
audio = audio.unsqueeze(0).to(device) # batchify
|
159 |
+
|
160 |
+
# if stereo convert to mono
|
161 |
+
if audio.shape[1] > 1:
|
162 |
+
audio = torch.mean(audio, dim=1, keepdim=True)
|
163 |
+
|
164 |
+
# Resample the audio to 16kHz for detectting
|
165 |
+
audio_16k = torchaudio.transforms.Resample(sample_rate, 16000).to(device)(audio)
|
166 |
+
|
167 |
+
# Detect watermarks in the audio
|
168 |
+
with torch.no_grad():
|
169 |
+
result, message = audio_detector.detect_watermark(audio_16k, 16000)
|
170 |
+
|
171 |
+
# pred_prob is a tensor of size batch x 2 x frames, indicating the probability (positive and negative) of watermarking for each frame
|
172 |
+
# A watermarked audio should have pred_prob[:, 1, :] > 0.5
|
173 |
+
# message_prob is a tensor of size batch x 16, indicating of the probability of each bit to be 1.
|
174 |
+
# message will be a random tensor if the detector detects no watermarking from the audio
|
175 |
+
pred_prob, message_prob = audio_detector(audio_16k, sample_rate)
|
176 |
+
|
177 |
+
print(f"Detection result for audio: {result}")
|
178 |
+
print(f"Extracted message from audio: {message}")
|
179 |
+
|
180 |
+
return msg_extracted, (result, message, pred_prob, message_prob)
|
181 |
+
else:
|
182 |
+
return msg_extracted, None
|
183 |
+
|
184 |
+
def get_waveform_and_specgram(waveform, sample_rate):
|
185 |
+
# If the audio has more than one channel, average all channels to 1 channel
|
186 |
+
if waveform.shape[0] > 1:
|
187 |
+
waveform = torch.mean(waveform, dim=0, keepdim=True)
|
188 |
+
|
189 |
+
waveform = waveform.squeeze().detach().cpu().numpy()
|
190 |
+
|
191 |
+
num_frames = waveform.shape[-1]
|
192 |
+
time_axis = torch.arange(0, num_frames) / sample_rate
|
193 |
+
|
194 |
+
figure, (ax1, ax2) = plt.subplots(2, 1)
|
195 |
+
|
196 |
+
ax1.plot(time_axis, waveform, linewidth=1)
|
197 |
+
ax1.grid(True)
|
198 |
+
ax2.specgram(waveform, Fs=sample_rate)
|
199 |
+
|
200 |
+
figure.suptitle(f"Waveform and specgram")
|
201 |
+
|
202 |
+
return figure
|
203 |
+
|
204 |
+
def generate_hex_format_regex(bytes_count):
|
205 |
+
hex_length = bytes_count * 2
|
206 |
+
hex_string = 'F' * hex_length
|
207 |
+
split_hex = [hex_string[i:i + 4] for i in range(0, len(hex_string), 4)]
|
208 |
+
format_like = "-".join(split_hex)
|
209 |
+
regex_pattern = '^' + '-'.join([r'[0-9A-Fa-f]{4}'] * len(split_hex)) + '$'
|
210 |
+
return format_like, regex_pattern
|
211 |
+
|
212 |
+
def generate_hex_random_message(bytes_count):
|
213 |
+
hex_length = bytes_count * 2
|
214 |
+
hex_string = ''.join(random.choice(string.hexdigits) for _ in range(hex_length))
|
215 |
+
split_hex = [hex_string[i:i + 4] for i in range(0, len(hex_string), 4)]
|
216 |
+
random_str = "-".join(split_hex)
|
217 |
+
return random_str, "".join(split_hex)
|
218 |
+
|
219 |
+
with gr.Blocks(title="VideoSeal") as demo:
|
220 |
+
gr.Markdown("""
|
221 |
+
# VideoSeal Demo
|
222 |
+
|
223 |
+
The current video will be YUV444P encoded, truncated to 3 seconds for use, and multi-channel audio will be merged into a single channel for processing.
|
224 |
+
|
225 |
+
Find the project [here](https://github.com/facebookresearch/videoseal.git).
|
226 |
+
""")
|
227 |
+
|
228 |
+
with gr.Tabs():
|
229 |
+
with gr.TabItem("Embed Watermark"):
|
230 |
+
with gr.Row():
|
231 |
+
with gr.Column():
|
232 |
+
embedding_vid = gr.Video(label="Input Video")
|
233 |
+
|
234 |
+
with gr.Row():
|
235 |
+
with gr.Column():
|
236 |
+
embedding_type = gr.Radio(["random", "input"], value="random", label="Type", info="Type of watermarks")
|
237 |
+
|
238 |
+
format_like, regex_pattern = generate_hex_format_regex(video_model_nbytes)
|
239 |
+
msg, _ = generate_hex_random_message(video_model_nbytes)
|
240 |
+
embedding_msg = gr.Textbox(
|
241 |
+
label=f"Message ({video_model_nbytes} bytes hex string)",
|
242 |
+
info=f"format like {format_like}",
|
243 |
+
value=msg,
|
244 |
+
interactive=False, show_copy_button=True)
|
245 |
+
with gr.Column():
|
246 |
+
embedding_only_vid = gr.Checkbox(label="Only Video", value=False)
|
247 |
+
|
248 |
+
embedding_specgram = gr.Checkbox(label="Show specgram", value=False, info="Show debug information")
|
249 |
+
|
250 |
+
format_like_a, regex_pattern_a = generate_hex_format_regex(audio_generator_nbytes)
|
251 |
+
msg_a, _ = generate_hex_random_message(audio_generator_nbytes)
|
252 |
+
embedding_msg_a = gr.Textbox(
|
253 |
+
label=f"Audio Message ({audio_generator_nbytes} bytes hex string)",
|
254 |
+
info=f"format like {format_like_a}",
|
255 |
+
value=msg_a,
|
256 |
+
interactive=False, show_copy_button=True)
|
257 |
+
|
258 |
+
embedding_btn = gr.Button("Embed Watermark")
|
259 |
+
with gr.Column():
|
260 |
+
marked_vid = gr.Video(label="Output Audio", show_download_button=True)
|
261 |
+
specgram_original = gr.Plot(label="Original Audio", format="png", visible=False)
|
262 |
+
specgram_watermarked = gr.Plot(label="Watermarked Audio", format="png", visible=False)
|
263 |
+
|
264 |
+
def change_embedding_type(video_only):
|
265 |
+
return [gr.update(visible=not video_only, value=False),gr.update(visible=not video_only)]
|
266 |
+
embedding_only_vid.change(
|
267 |
+
fn=change_embedding_type,
|
268 |
+
inputs=[embedding_only_vid],
|
269 |
+
outputs=[embedding_specgram, embedding_msg_a]
|
270 |
+
)
|
271 |
+
|
272 |
+
def change_embedding_type(type):
|
273 |
+
if type == "random":
|
274 |
+
msg, _ = generate_hex_random_message(video_model_nbytes)
|
275 |
+
msg_a,_ = generate_hex_random_message(audio_generator_nbytes)
|
276 |
+
return [gr.update(interactive=False, value=msg),gr.update(interactive=False, value=msg_a)]
|
277 |
+
else:
|
278 |
+
return [gr.update(interactive=True),gr.update(interactive=True)]
|
279 |
+
embedding_type.change(
|
280 |
+
fn=change_embedding_type,
|
281 |
+
inputs=[embedding_type],
|
282 |
+
outputs=[embedding_msg, embedding_msg_a]
|
283 |
+
)
|
284 |
+
|
285 |
+
def check_embedding_msg(msg, msg_a):
|
286 |
+
if not re.match(regex_pattern, msg):
|
287 |
+
gr.Warning(
|
288 |
+
f"Invalid format. Please use like '{format_like}'",
|
289 |
+
duration=0)
|
290 |
+
if not re.match(regex_pattern_a, msg_a):
|
291 |
+
gr.Warning(
|
292 |
+
f"Invalid format. Please use like '{format_like_a}'",
|
293 |
+
duration=0)
|
294 |
+
embedding_msg.change(
|
295 |
+
fn=check_embedding_msg,
|
296 |
+
inputs=[embedding_msg, embedding_msg_a],
|
297 |
+
outputs=[]
|
298 |
+
)
|
299 |
+
|
300 |
+
def run_embed_watermark(file, video_only, show_specgram, msg, msg_a):
|
301 |
+
if file is None:
|
302 |
+
raise gr.Error("No file uploaded", duration=5)
|
303 |
+
if not re.match(regex_pattern, msg):
|
304 |
+
raise gr.Error(f"Invalid format. Please use like '{format_like}'", duration=5)
|
305 |
+
if not re.match(regex_pattern_a, msg_a):
|
306 |
+
raise gr.Error(f"Invalid format. Please use like '{format_like_a}'", duration=5)
|
307 |
+
|
308 |
+
msg_pt = generate_msg_pt_by_format_string(msg, video_model_nbytes)
|
309 |
+
msg_pt_a = generate_msg_pt_by_format_string(msg_a, audio_generator_nbytes)
|
310 |
+
video, fps, audio, rate = load_video(file)
|
311 |
+
|
312 |
+
output_path = file + '.marked.mp4'
|
313 |
+
_, audio_w = embed_watermark(output_path, msg_pt, msg_pt_a, video_only, video, fps, audio, rate)
|
314 |
+
|
315 |
+
if show_specgram:
|
316 |
+
fig_original = get_waveform_and_specgram(audio, rate)
|
317 |
+
fig_watermarked = get_waveform_and_specgram(audio_w, rate)
|
318 |
+
return [
|
319 |
+
output_path,
|
320 |
+
gr.update(visible=True, value=fig_original),
|
321 |
+
gr.update(visible=True, value=fig_watermarked)]
|
322 |
+
else:
|
323 |
+
return [
|
324 |
+
output_path,
|
325 |
+
gr.update(visible=False),
|
326 |
+
gr.update(visible=False)]
|
327 |
+
embedding_btn.click(
|
328 |
+
fn=run_embed_watermark,
|
329 |
+
inputs=[embedding_vid, embedding_only_vid, embedding_specgram, embedding_msg, embedding_msg_a],
|
330 |
+
outputs=[marked_vid, specgram_original, specgram_watermarked]
|
331 |
+
)
|
332 |
+
|
333 |
+
with gr.TabItem("Detect Watermark"):
|
334 |
+
with gr.Row():
|
335 |
+
with gr.Column():
|
336 |
+
detecting_vid = gr.Video(label="Input Video")
|
337 |
+
detecting_only_vid = gr.Checkbox(label="Only Video", value=False)
|
338 |
+
detecting_btn = gr.Button("Detect Watermark")
|
339 |
+
with gr.Column():
|
340 |
+
predicted_messages = gr.JSON(label="Detected Messages")
|
341 |
+
|
342 |
+
def run_detect_watermark(file, video_only):
|
343 |
+
if file is None:
|
344 |
+
raise gr.Error("No file uploaded", duration=5)
|
345 |
+
|
346 |
+
video, _, audio, rate = load_video(file)
|
347 |
+
|
348 |
+
if video_only:
|
349 |
+
msg_extracted, _ = detect_watermark(video_only, video, audio, rate)
|
350 |
+
|
351 |
+
audio_json = None
|
352 |
+
else:
|
353 |
+
msg_extracted, (result, message, pred_prob, message_prob) = detect_watermark(video_only, video, audio, rate)
|
354 |
+
|
355 |
+
_, fromat_msg = generate_format_string_by_msg_pt(message[0], audio_generator_nbytes)
|
356 |
+
|
357 |
+
sum_above_05 = (pred_prob[:, 1, :] > 0.5).sum(dim=1)
|
358 |
+
|
359 |
+
audio_json = {
|
360 |
+
"socre": result,
|
361 |
+
"message": fromat_msg,
|
362 |
+
"frames_count_all": pred_prob.shape[2],
|
363 |
+
"frames_count_above_05": sum_above_05[0].item(),
|
364 |
+
"bits_probability": message_prob[0].tolist(),
|
365 |
+
"bits_massage": message[0].tolist()
|
366 |
+
}
|
367 |
+
|
368 |
+
_, fromat_msg = generate_format_string_by_msg_pt(msg_extracted[0], video_model_nbytes)
|
369 |
+
|
370 |
+
# Create message output as JSON
|
371 |
+
message_json = {
|
372 |
+
"video": {
|
373 |
+
"message": fromat_msg,
|
374 |
+
},
|
375 |
+
"audio:": audio_json
|
376 |
+
}
|
377 |
+
return message_json
|
378 |
+
detecting_btn.click(
|
379 |
+
fn=run_detect_watermark,
|
380 |
+
inputs=[detecting_vid, detecting_only_vid],
|
381 |
+
outputs=[predicted_messages]
|
382 |
+
)
|
383 |
+
|
384 |
+
if __name__ == "__main__":
|
385 |
+
demo.launch()
|
gradio_run.py
ADDED
@@ -0,0 +1,7 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# NOTE: copy from gradio bin
|
2 |
+
import re
|
3 |
+
import sys
|
4 |
+
from gradio.cli import cli
|
5 |
+
if __name__ == '__main__':
|
6 |
+
sys.argv[0] = re.sub(r'(-script\.pyw|\.exe)?$', '', sys.argv[0])
|
7 |
+
sys.exit(cli())
|
requirements.txt
ADDED
@@ -0,0 +1,7 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
torch==2.5.1
|
2 |
+
gradio==5.8.0
|
3 |
+
huggingface-hub==0.26.3
|
4 |
+
audioseal==0.1.4
|
5 |
+
matplotlib==3.10.0
|
6 |
+
soundfile==0.12.1
|
7 |
+
torchaudio==2.5.1
|