xiaoyao9184 commited on
Commit
82e1374
·
verified ·
1 Parent(s): 8ac268f

Synced repo using 'sync_with_huggingface' Github Action

Browse files
Files changed (2) hide show
  1. gradio_app.py +113 -0
  2. requirements.txt +4 -0
gradio_app.py ADDED
@@ -0,0 +1,113 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+
2
+ import gradio as gr
3
+
4
+ from torchvision import transforms
5
+ from torchvision.transforms.functional import InterpolationMode
6
+
7
+ import os
8
+ import onnxruntime
9
+ import numpy as np
10
+
11
+ def predict_fault(image, model):
12
+ image = image.detach().cpu().numpy()
13
+ input = {model.get_inputs()[0].name: image}
14
+ output = model.run(None, input)
15
+ preds = np.argmax(output[0], 1)
16
+ return preds.item()
17
+
18
+ def detect(image, writing_type, post_it, corner, empty):
19
+ writing_type_model, post_it_model, corner_model, empty_model = models
20
+
21
+ res_dict = {}
22
+
23
+ if writing_type:
24
+ input_image = writing_type_transforms(image).unsqueeze(0)
25
+ label = predict_fault(input_image, writing_type_model)
26
+ res_dict['writing_type'] = label
27
+
28
+ if post_it:
29
+ input_image = data_transforms(image).unsqueeze(0)
30
+ label = predict_fault(input_image, post_it_model)
31
+ res_dict['post_it'] = label
32
+
33
+ if corner:
34
+ input_image = data_transforms(image).unsqueeze(0)
35
+ label = predict_fault(input_image, corner_model)
36
+ res_dict['corner'] = label
37
+
38
+ if empty:
39
+ input_image = empty_transforms(image).unsqueeze(0)
40
+ label = predict_fault(input_image, empty_model)
41
+ res_dict['empty'] = 1 - label
42
+
43
+ return res_dict
44
+
45
+ def load_models():
46
+ try:
47
+ MODEL_PATH = os.environ.get("MODEL_PATH", './models/')
48
+ POST_IT_MODEL = os.environ.get("POST_IT_MODEL", 'post_it_model.onnx')
49
+ CORNER_MODEL = os.environ.get("CORNER_MODEL", 'corner_model.onnx')
50
+ EMPTY_MODEL = os.environ.get("EMPTY_MODEL", 'empty_v5_24_08_23.onnx')
51
+ WRITING_TYPE_MODEL = os.environ.get("WRITING_TYPE_MODEL", 'writing_type_v1.onnx')
52
+
53
+ print(f"ORT device: {onnxruntime.get_device()}")
54
+
55
+ # Load the models and the trained weights
56
+ writing_type_model = onnxruntime.InferenceSession(os.path.join(MODEL_PATH, WRITING_TYPE_MODEL))
57
+ post_it_model = onnxruntime.InferenceSession(os.path.join(MODEL_PATH, POST_IT_MODEL))
58
+ corner_model = onnxruntime.InferenceSession(os.path.join(MODEL_PATH, CORNER_MODEL))
59
+ empty_model = onnxruntime.InferenceSession(os.path.join(MODEL_PATH, EMPTY_MODEL))
60
+
61
+ return writing_type_model, post_it_model, corner_model, empty_model
62
+ except Exception as e:
63
+ print("Failed to load pretrained models: {}".format(e))
64
+
65
+ # Load the models
66
+ models = load_models()
67
+
68
+ # Transform methods for corner & post-it model inputs
69
+ data_transforms = transforms.Compose([
70
+ transforms.Resize((224, 224)),
71
+ transforms.ToTensor()
72
+ ])
73
+
74
+ # Transform methods for empty model inputs
75
+ empty_transforms = transforms.Compose([
76
+ transforms.Resize((224, 224), interpolation=InterpolationMode.BICUBIC),
77
+ transforms.ToTensor(),
78
+ transforms.Normalize([0.485, 0.456, 0.406], [0.229, 0.224, 0.225])
79
+ ])
80
+
81
+ # Transform methods for writing-type model inputs
82
+ writing_type_transforms = transforms.Compose([
83
+ transforms.Resize((224, 224), interpolation=InterpolationMode.BICUBIC),
84
+ transforms.ToTensor(),
85
+ transforms.Normalize([0.882, 0.883, 0.899], [0.088, 0.089, 0.094])
86
+ ])
87
+
88
+
89
+ with gr.Blocks(title="Image Faulty Demo") as demo:
90
+ gr.Markdown("""
91
+ # Image Faulty
92
+ Find the project [here](https://github.com/xiaoyao9184/image-faulty).
93
+ """)
94
+
95
+ with gr.Row():
96
+ with gr.Column():
97
+ detecting_img = gr.Image(label="Input Image", type="pil", height=512)
98
+ with gr.Column():
99
+ writing_ckb = gr.Checkbox(label="Writing type", value=True)
100
+ postit_ckb = gr.Checkbox(label="Post it", value=True)
101
+ corner_ckb = gr.Checkbox(label="Folded corner", value=True)
102
+ empty_ckb = gr.Checkbox(label="Parper empty", value=True)
103
+ detecting_btn = gr.Button("Detect")
104
+ predicted_messages = gr.JSON(label="Detected Messages")
105
+
106
+ detecting_btn.click(
107
+ fn=detect,
108
+ inputs=[detecting_img, writing_ckb, postit_ckb, corner_ckb, empty_ckb],
109
+ outputs=[predicted_messages]
110
+ )
111
+
112
+ if __name__ == '__main__':
113
+ demo.launch()
requirements.txt ADDED
@@ -0,0 +1,4 @@
 
 
 
 
 
1
+ gradio==5.8.0
2
+ onnxruntime==1.20.1
3
+ torchvision==0.13.0
4
+ numpy==1.21.6