import gradio as gr import torch from PIL import Image from safetensors import safe_open from torchvision import models, transforms labels = ["bread", "dog"] model = models.vgg16(pretrained=True) model.classifier[6] = torch.nn.Linear(in_features=4096, out_features=2) model_save_path = "models/model.safetensors" tensors = {} with safe_open(model_save_path, framework="pt", device="cpu") as f: for key in f.keys(): tensors[key] = f.get_tensor(key) model.load_state_dict(tensors, strict=False) model.eval() preprocess = transforms.Compose([ transforms.Resize((224, 224)), # Resize all images to 224x224 transforms.ToTensor(), # Convert images to PyTorch tensors ]) def classify_image(input_image: Image): img_t = preprocess(input_image) batch_t = torch.unsqueeze(img_t, 0) with torch.no_grad(): output = model(batch_t) probabilities = torch.nn.functional.softmax(output, dim=1) label_to_prob = {labels[i]: prob for i, prob in enumerate(probabilities[0])} return label_to_prob demo = gr.Interface(fn=classify_image, inputs=gr.Image(type='pil'), outputs='label') demo.launch()