import gradio as gr import pickle as pkl import timm from fastai.vision.all import * from pathlib import Path learn = load_learner('./model.pkl') categories = learn.dls.vocab # Function to classify an image def classify_image(img): pred, idx, probs = learn.predict(img) return dict(zip(categories, map(float, probs))) # Map categories to their probabilities # Define Gradio input and output components using the updated API image = gr.Image(width=224, height=224) # Image input with fixed shape label = gr.Label() # Output label to display classification examples = ['test_image1.jpg', 'test_image2.jpg'] # Path to image(s) for demonstration # Create and launch the Gradio interface intf = gr.Interface(fn=classify_image, inputs=image, outputs=label, examples=examples) intf.launch(share=True)