import streamlit as st from http import client import os,json import pandas as pd import requests from PIL import Image from transformers import TrOCRProcessor, VisionEncoderDecoderModel st.header("Xelpmoc - Snippet level OCR") processor = TrOCRProcessor.from_pretrained('microsoft/trocr-base-printed') model = VisionEncoderDecoderModel.from_pretrained('microsoft/trocr-base-printed') def TrOCR_predict(pixel_values, processor, model): generated_ids = model.generate(pixel_values,output_scores=True,return_dict_in_generate=True, max_length = 64) predicted_text = processor.batch_decode(generated_ids[0], skip_special_tokens=True) return predicted_text uploaded_file = st.file_uploader("Choose a file") if uploaded_file is not None: content = uploaded_file.read() st.image(uploaded_file) image = Image.open(uploaded_file) if image.mode != "RGB": # Convert the image to RGB image = image.convert("RGB") pixel_values = processor(images=image, return_tensors="pt").pixel_values predicted_text = TrOCR_predict(pixel_values, processor, model)[0] texts = predicted_text st.write(texts)