import gradio as gr
from huggingface_hub import InferenceClient
import os
api_key=os.environ.get('qwen_API_KEY')
"""
For more information on `huggingface_hub` Inference API support, please check the docs: https://huggingface.co/docs/huggingface_hub/v0.22.2/en/guides/inference
"""
client = InferenceClient("Qwen/Qwen2.5-72B-Instruct",token=api_key)
def respond(
message,
history: list[tuple[str, str]],
system_message,
max_tokens,
temperature,
top_p
):
messages = [{"role": "system", "content": system_message}]
for val in history:
if val[0]:
messages.append({"role": "user", "content": val[0]})
if val[1]:
messages.append({"role": "assistant", "content": val[1]})
messages.append({"role": "user", "content": message})
response = ""
for message in client.chat_completion(
messages,
max_tokens=max_tokens,
stream=True,
temperature=temperature,
top_p=top_p
):
token = message.choices[0].delta.content
response += token
yield response
# Gradio ChatInterface setup with MathJax
mathjax_script = """
"""
demo = gr.ChatInterface(
respond,
examples=[["你好,你是谁?"], ["你是谁开发的?"]],
cache_examples=False,
title="千问2.5-72B",
description="千问2.5-72B聊天机器人",
additional_inputs=[
gr.Textbox(value="You are Qwen, created by Alibaba Cloud. You are a helpful assistant.", label="System message"),
gr.Slider(minimum=1, maximum=8888, value=2048, step=1, label="Max new tokens"),
gr.Slider(minimum=0.1, maximum=4.0, value=0.7, step=0.1, label="Temperature"),
gr.Slider(minimum=0.1, maximum=1.0, value=0.95, step=0.05, label="Top-p (nucleus sampling)"),
],
css=mathjax_script,
chatbot=gr.Chatbot(show_label=False, show_share_button=False, show_copy_button=True, likeable=True, layout="panel")
)
if __name__ == "__main__":
demo.launch()