Spaces:
Runtime error
Runtime error
File size: 12,645 Bytes
c9f2325 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 |
import json
import re
from reportlab.platypus import Paragraph, Frame, Spacer
from reportlab.lib.styles import getSampleStyleSheet
import datetime
from reportlab.lib.styles import getSampleStyleSheet
import streamlit as st
import tempfile
import os
from reportlab.pdfgen import canvas
from reportlab.lib.pagesizes import A4, letter
ENABLE_STREAM = False
def merge_json_strings(json_str1, json_str2):
"""
Merges two JSON strings into one, handling potential markdown tags.
Args:
json_str1: The first JSON string, potentially with markdown tags.
json_str2: The second JSON string, potentially with markdown tags.
Returns:
A cleaned JSON string representing the merged JSON objects.
"""
# Clean the JSON strings by removing markdown tags
cleaned_json_str1 = clean_markdown(json_str1)
cleaned_json_str2 = clean_markdown(json_str2)
try:
# Parse the cleaned JSON strings into Python dictionaries
data1 = json.loads(cleaned_json_str1)
data2 = json.loads(cleaned_json_str2)
# Merge the dictionaries
merged_data = _merge_dicts(data1, data2)
# Convert the merged dictionary back into a JSON string
return json.dumps(merged_data, indent=2)
except json.JSONDecodeError as e:
return f"Error decoding JSON: {e}"
def clean_markdown(text):
"""
Removes markdown tags from a string if they exist.
Otherwise, returns the original string unchanged.
Args:
text: The input string.
Returns:
The string with markdown tags removed, or the original string
if no markdown tags were found.
"""
try:
# Check if the string contains markdown
if re.match(r"^```json\s*", text) and re.search(r"\s*```$", text):
# Remove leading ```json
text = re.sub(r"^```json\s*", "", text)
# Remove trailing ```
text = re.sub(r"\s*```$", "", text)
return text
except Exception as e:
# Log the error
st.error(f"Error cleaning markdown: {e}")
return None
def _merge_dicts(data1, data2):
"""
Recursively merges two data structures.
Handles merging of dictionaries and lists.
For dictionaries, if a key exists in both and both values are dictionaries
or lists, they are merged recursively. Otherwise, the value from data2 is used.
For lists, the lists are concatenated.
Args:
data1: The first data structure (dictionary or list).
data2: The second data structure (dictionary or list).
Returns:
The merged data structure.
Raises:
ValueError: If the data types are not supported for merging.
"""
if isinstance(data1, dict) and isinstance(data2, dict):
for key, value in data2.items():
if key in data1 and isinstance(data1[key], (dict, list)) and isinstance(value, type(data1[key])):
_merge_dicts(data1[key], value)
else:
data1[key] = value
return data1
elif isinstance(data1, list) and isinstance(data2, list):
return data1 + data2
else:
raise ValueError("Unsupported data types for merging")
def create_json(metadata, content):
"""
Creates a JSON string combining metadata and content.
Args:
metadata: A dictionary containing metadata information.
content: A dictionary containing the quiz content.
Returns:
A string representing the combined JSON data.
"""
# Create metadata with timestamp
metadata = {
"subject": metadata.get("subject", ""),
"topic": metadata.get("topic", ""),
"num_questions": metadata.get("num_questions", 0),
"exam_type": metadata.get("exam_type", ""),
"timestamp": datetime.datetime.now().isoformat()
}
# Combine metadata and content
combined_data = {"metadata": metadata, "content": content}
# Convert to JSON string
json_string = json.dumps(combined_data, indent=4)
return json_string
def create_pdf(data):
"""
Creates a PDF file with text wrapping for quiz content, supporting multiple question types.
"""
try:
# Load the JSON data
data = json.loads(data)
if 'metadata' not in data or 'content' not in data:
st.error("Error: Invalid data format. Missing 'metadata' or 'content' keys.")
return None
metadata = data['metadata']
content = data['content']
# Validate metadata
required_metadata_keys = ['subject', 'topic', 'exam_type', 'num_questions']
if not all(key in metadata for key in required_metadata_keys):
st.error("Error: Invalid metadata format. Missing required keys.")
return None
# Create a unique filename with timestamp
timestamp = datetime.datetime.now().strftime("%Y%m%d_%H%M%S")
pdf_filename = f"quiz_output_{timestamp}.pdf"
temp_dir = tempfile.gettempdir()
pdf_path = os.path.join(temp_dir, pdf_filename)
c = canvas.Canvas(pdf_path, pagesize=A4)
c.setFont("Helvetica", 10)
styles = getSampleStyleSheet()
text_style = styles['Normal']
# Starting position
margin_left = 50
y_position = 750
line_height = 12 # Adjusted for tighter spacing
frame_width = 500
first_page = True
def wrap_text_draw(text, x, y):
"""
Wraps and draws text using ReportLab's Paragraph for automatic line breaks.
"""
p = Paragraph(text, text_style)
width, height = p.wrap(frame_width, y)
p.drawOn(c, x, y - height)
return height
# Print metadata once on the first page
if first_page:
for key, label in [("subject", "Subject"), ("topic", "Topic"),
("exam_type", "Type"), ("num_questions", "Number of Questions")]:
c.drawString(margin_left, y_position, f"{label}: {metadata[key]}")
y_position -= line_height
y_position -= line_height
first_page = False
# Render questions and options
for idx, q in enumerate(content):
if not isinstance(q, dict):
st.error(f"Error: Invalid question format at index {idx}. Skipping...")
continue
question_text = f"{idx + 1}. {q.get('question', q.get('statement', ''))}"
height = wrap_text_draw(question_text, margin_left, y_position)
y_position -= (height + line_height)
if y_position < 50:
c.showPage()
c.setFont("Helvetica", 10)
y_position = 750
# Handle specific exam types
exam_type = metadata['exam_type']
if exam_type == "Multiple Choice":
for option_idx, option in enumerate(q['options'], ord('a')):
option_text = f"{chr(option_idx)}) {option}"
height = wrap_text_draw(option_text, margin_left + 20, y_position)
y_position -= (height + line_height)
if y_position < 50:
c.showPage()
c.setFont("Helvetica", 10)
y_position = 750
# Print correct answer
correct_answer_text = f"Correct Answer: {q['correct_answer']}"
height = wrap_text_draw(correct_answer_text, margin_left + 20, y_position)
y_position -= (height + line_height)
elif exam_type == "True or False":
for option in q['options']:
height = wrap_text_draw(option, margin_left + 20, y_position)
y_position -= (height + line_height)
if y_position < 50:
c.showPage()
c.setFont("Helvetica", 10)
y_position = 750
correct_answer_text = f"Correct Answer: {q['correct_answer']}"
height = wrap_text_draw(correct_answer_text, margin_left + 20, y_position)
y_position -= (height + line_height)
elif exam_type in ["Short Response", "Essay Type"]:
answer_text = f"Correct Answer: {q['correct_answer']}"
height = wrap_text_draw(answer_text, margin_left + 20, y_position)
y_position -= (height + line_height)
if y_position < 50:
c.showPage()
c.setFont("Helvetica", 10)
y_position = 750
# Add a footer
notice = "This exam was generated by the WVSU Exam Maker (c) 2025 West Visayas State University"
c.drawString(margin_left, y_position, notice)
c.save()
return pdf_path
except Exception as e:
st.error(f"Error creating PDF: {e}")
return None
def generate_quiz_content(data):
"""
Separates the metadata and content from a JSON string containing exam data.
Creates a markdown formatted text that contains the exam metadata and
enumerates the questions, options and answers nicely formatted for readability.
Args:
data: A JSON string containing the exam data.
Returns:
A markdown formatted string.
"""
data = json.loads(data)
metadata = data["metadata"]
content = data["content"]
exam_type = metadata["exam_type"]
if exam_type == "Multiple Choice":
md_text = f"""# {metadata['subject']} - {metadata['topic']}
**Exam Type:** {metadata['exam_type']}
**Number of Questions:** {metadata['num_questions']}
**Timestamp:** {metadata['timestamp']}
---
"""
for i, q in enumerate(content):
md_text += f"""Question {i+1}:
{q['question']}
"""
for j, option in enumerate(q['options'], ord('a')):
md_text += f"""{chr(j)}. {option}
"""
md_text += f"""**Correct Answer:** {q['correct_answer']}
---
"""
md_text += """This exam was generated by the WVSU Exam Maker
(c) 2025 West Visayas State University
"""
elif exam_type == "True or False":
md_text = f"""# {metadata['subject']} - {metadata['topic']}
**Exam Type:** {metadata['exam_type']}
**Number of Questions:** {metadata['num_questions']}
**Timestamp:** {metadata['timestamp']}
---
"""
for i, q in enumerate(content):
md_text += f"""Statement {i+1}:
{q['statement']}
"""
for j, option in enumerate(q['options'], ord('a')):
md_text += f"""{option}
"""
md_text += f"""**Correct Answer:** {q['correct_answer']}
---
"""
md_text += """This exam was generated by the WVSU Exam Maker
(c) 2025 West Visayas State University"""
elif exam_type == "Short Response" or exam_type == "Essay Type":
md_text = f"""# {metadata['subject']} - {metadata['topic']}
**Exam Type:** {metadata['exam_type']}
**Number of Questions:** {metadata['num_questions']}
**Timestamp:** {metadata['timestamp']}
---
"""
for i, q in enumerate(content):
md_text += f"""Question {i+1}:
{q['question']}
"""
md_text += f"""**Correct Answer:** {q['correct_answer']}
---
"""
md_text += """This exam was generated by the WVSU Exam Maker
(c) 2025 West Visayas State University"""
return md_text
def generate_metadata(subject, topic, num_questions, exam_type):
"""Generates quiz metadata as a dictionary combining num_questions,
exam_type, and timestamp.
Args:
num_questions: The number of questions in the exam (int).
exam_type: The type of exam (str).
Returns:
A dictionary containing the quiz metadata.
"""
# Format the timestamp
timestamp = datetime.datetime.now()
formatted_timestamp = timestamp.strftime("%Y-%m-%d %H:%M:%S")
metadata = {
"subject": subject,
"topic": topic,
"num_questions": num_questions,
"exam_type": exam_type,
"timestamp": formatted_timestamp
}
return metadata
def generate_text(prompt):
"""Generates text based on the prompt."""
try:
# Send a text prompt to Gemini API
chat = st.session_state.chat
response = chat.send_message(
[
prompt
],
stream=ENABLE_STREAM
)
return response.text
except Exception as e:
st.error(f"An error occurred while generating text: {e}")
return None |