import json from huggingface_hub import InferenceClient import gradio as gr import random API_URL = "https://api-inference.huggingface.co/models/" client = InferenceClient( "mistralai/Mistral-7B-Instruct-v0.1" ) def format_prompt(message, history): prompt = "You're a helpful assistant." for user_prompt, bot_response in history: prompt += f"[INST] {user_prompt} [/INST]" prompt += f" {bot_response} " prompt += f"[INST] {message} [/INST]" return prompt def generate(prompt, history, temperature=0.9, max_new_tokens=2048, top_p=0.95, repetition_penalty=1.0): temperature = float(temperature) if temperature < 1e-2: temperature = 1e-2 top_p = float(top_p) generate_kwargs = dict( temperature=temperature, max_new_tokens=max_new_tokens, top_p=top_p, repetition_penalty=repetition_penalty, do_sample=True, seed=random.randint(0, 10**7), ) formatted_prompt = format_prompt(prompt, history) stream = client.text_generation(formatted_prompt, **generate_kwargs, stream=True, details=True, return_full_text=False) output = "" for response in stream: output += response.token.text yield output return output def load_database(): try: # Attempt to load the database from JSON with open("database.json", "r", encoding="utf-8") as f: return json.load(f) except (FileNotFoundError, json.JSONDecodeError): # Handle potential errors gracefully print("Error loading database: File not found or invalid format. Creating an empty database.") return [] # Return an empty list if database loading fails def save_database(data): try: # Save the updated database to JSON with open("database.json", "w", encoding="utf-8") as f: json.dump(data, f, indent=4) except (IOError, json.JSONEncodeError): # Handle potential errors gracefully print("Error saving database: Encountered an issue while saving.") def chat_interface(message): database = load_database() # Check if the question already exists in the database if (message, None) not in database: # If not, generate a response and add it to the database response = generate(message, history=[]) database.append((message, response)) save_database(database) else: # If it does, retrieve the stored response _, stored_response = next(item for item in database if item[0] == message) response = stored_response return response with gr.Blocks(theme=gr.themes.Soft()) as demo: demo.register("message", gr.Textbox(label="Your question")) demo.register("response", gr.Textbox(label="Assistant's response")) demo.launch(fn=chat_interface, inputs=["message"], outputs=["response"])