import torch import numpy as np import torch.nn.functional as F from models.stylegan2.model import Generator from models.encoders.psp_encoders import Encoder4Editing from models.stylegene.model import MappingSub2W, MappingW2Sub from models.stylegene.util import get_keys, requires_grad, load_img from models.stylegene.gene_pool import GenePoolFactory from models.stylegene.gene_crossover_mutation import fuse_latent from models.stylegene.fair_face_model import init_fair_model, predict_race from configs import path_ckpt_e4e, path_ckpt_stylegan2, path_ckpt_stylegene, path_ckpt_genepool, path_dataset_ffhq from preprocess.align_images import align_face device = torch.device('cuda:0') if torch.cuda.is_available() else torch.device('cpu') def init_model(image_size=1024, latent_dim=512): ckp = torch.load(path_ckpt_e4e, map_location='cpu') encoder = Encoder4Editing(50, 'ir_se', image_size).eval() encoder.load_state_dict(get_keys(ckp, 'encoder'), strict=True) mean_latent = ckp['latent_avg'].to('cpu') mean_latent.unsqueeze_(0) generator = Generator(image_size, latent_dim, 8) checkpoint = torch.load(path_ckpt_stylegan2, map_location='cpu') generator.load_state_dict(checkpoint["g_ema"], strict=False) generator.eval() sub2w = MappingSub2W(N=18).eval() w2sub34 = MappingW2Sub(N=18).eval() ckp = torch.load(path_ckpt_stylegene, map_location='cpu') w2sub34.load_state_dict(get_keys(ckp, 'w2sub34')) sub2w.load_state_dict(get_keys(ckp, 'sub2w')) requires_grad(sub2w, False) requires_grad(w2sub34, False) requires_grad(encoder, False) requires_grad(generator, False) return encoder, generator, sub2w, w2sub34, mean_latent # init model encoder, generator, sub2w, w2sub34, mean_latent = init_model() encoder, generator, sub2w, w2sub34, mean_latent = encoder.to(device), generator.to(device), sub2w.to( device), w2sub34.to(device), mean_latent.to(device) model_fair_7 = init_fair_model(device) # init FairFace model # load a GenePool geneFactor = GenePoolFactory(root_ffhq=path_dataset_ffhq, device=device, mean_latent=mean_latent, max_sample=300) geneFactor.pools = torch.load(path_ckpt_genepool) print("gene pool loaded!") def tensor2rgb(tensor): tensor = (tensor * 0.5 + 0.5) * 255 tensor = torch.clip(tensor, 0, 255).squeeze(0) tensor = tensor.detach().cpu().numpy().transpose(1, 2, 0) tensor = tensor.astype(np.uint8) return tensor def generate_child(w18_F, w18_M, random_fakes, gamma=0.46, eta=0.4): w18_syn = fuse_latent(w2sub34, sub2w, w18_F=w18_F, w18_M=w18_M, random_fakes=random_fakes, fixed_gamma=gamma, fixed_eta=eta) img_C, _ = generator([w18_syn], return_latents=True, input_is_latent=True) return img_C, w18_syn def synthesize_descendant(pF, pM, attributes=None): gender_all = ['male', 'female'] ages_all = ['0-2', '3-9', '10-19', '20-29', '30-39', '40-49', '50-59', '60-69', '70+'] if attributes is None: attributes = {'age': ages_all[0], 'gender': gender_all[0], 'gamma': 0.47, 'eta': 0.4} imgF = align_face(pF) imgM = align_face(pM) imgF = load_img(imgF) imgM = load_img(imgM) imgF, imgM = imgF.to(device), imgM.to(device) father_race, _, _, _ = predict_race(model_fair_7, imgF.clone(), imgF.device) mother_race, _, _, _ = predict_race(model_fair_7, imgM.clone(), imgM.device) w18_1 = encoder(F.interpolate(imgF, size=(256, 256))) + mean_latent w18_2 = encoder(F.interpolate(imgM, size=(256, 256))) + mean_latent random_fakes = [] for r in list({father_race, mother_race}): # search RFGs from Gene Pool random_fakes = random_fakes + geneFactor(encoder, w2sub34, attributes['age'], attributes['gender'], r) img_C, w18_syn = generate_child(w18_1.clone(), w18_2.clone(), random_fakes, gamma=attributes['gamma'], eta=attributes['eta']) img_C = tensor2rgb(img_C) img_F = tensor2rgb(imgF) img_M = tensor2rgb(imgM) return img_F, img_M, img_C