import streamlit as st from transformers import pipeline from PIL import Image #pipeline = pipeline(task="image-classification", model="julien-c/hotdog-not-hotdog") #pipeline = pipeline(task="image-classification", model="Rajaram1996/FacialEmoRecog") pipeline = pipeline(task="image-classification", model="Bazaar/cv_apple_leaf_disease_detection") st.title("Leaf disease?") file_name = st.file_uploader("Upload a leaf candidate image") if file_name is not None: col1, col2 = st.columns(2) image = Image.open(file_name) col1.image(image, use_column_width=True) predictions = pipeline(image) col2.header("Confidence Score") for p in predictions: col2.subheader(f"{ p['label'] }: { round(p['score'] * 100, 1)}%")