File size: 2,401 Bytes
ab576ba
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
import torch
import torch.nn as nn


class BasicConvBlock(nn.Module):
    def __init__(self, in_channels: int, out_channels: int):
        super(BasicConvBlock, self).__init__()
        self.conv_layer = nn.Conv2d(in_channels, out_channels, kernel_size=3, padding=1)
        self.bn_layer = nn.BatchNorm2d(out_channels, momentum=0.99, eps=0.001)
        self.act_layer = nn.ReLU(inplace=True)

    def forward(self, x):
        x = self.conv_layer(x)
        x = self.bn_layer(x)
        return self.act_layer(x)


class ResBlock(nn.Module):
    def __init__(self, channels: int):
        super(ResBlock, self).__init__()
        self.conv_block = BasicConvBlock(channels, channels)
        self.sec_layer = nn.Conv2d(channels, channels, kernel_size=3, padding=1)
        self.bn_layer = nn.BatchNorm2d(channels, momentum=0.99, eps=0.001)
        self.act_layer = nn.ReLU(inplace=True)

    def forward(self, x):
        h = self.conv_block(x)
        h = self.sec_layer(h)
        h = self.bn_layer(h)
        return self.act_layer(x + h)


class WPODNet(nn.Module):
    def __init__(self):
        super(WPODNet, self).__init__()
        self.backbone = nn.Sequential(
            BasicConvBlock(3, 16),
            BasicConvBlock(16, 16),
            nn.MaxPool2d(2),
            BasicConvBlock(16, 32),
            ResBlock(32),
            nn.MaxPool2d(2),
            BasicConvBlock(32, 64),
            ResBlock(64),
            ResBlock(64),
            nn.MaxPool2d(2),
            BasicConvBlock(64, 64),
            ResBlock(64),
            ResBlock(64),
            nn.MaxPool2d(2),
            BasicConvBlock(64, 128),
            ResBlock(128),
            ResBlock(128),
            ResBlock(128),
            ResBlock(128)
        )
        self.prob_layer = nn.Conv2d(128, 2, kernel_size=3, padding=1)
        self.bbox_layer = nn.Conv2d(128, 6, kernel_size=3, padding=1)

        # Registry a dummy tensor for retrieve the attached device
        self.register_buffer('dummy', torch.Tensor(), persistent=False)

    @property
    def device(self) -> torch.device:
        return self.dummy.device

    def forward(self, image: torch.Tensor):
        feature: torch.Tensor = self.backbone(image)
        probs: torch.Tensor = self.prob_layer(feature)
        probs = torch.softmax(probs, dim=1)
        affines: torch.Tensor = self.bbox_layer(feature)

        return probs, affines