File size: 7,782 Bytes
8a341bb
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
7bed5cc
 
 
 
8a341bb
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
import gradio as gr
from tensorflow import keras
from keras import layers
import tensorflow as tf
import numpy as np

IMAGE_SIZE = (299, 299)
VOCAB_SIZE = 8800
SEQ_LENGTH = 25
EMBED_DIM = 512
FF_DIM = 512
import re

image_augmentation = keras.Sequential(
    [
        keras.layers.RandomFlip("horizontal"),
        keras.layers.RandomRotation(0.2),
        keras.layers.RandomContrast(0.3),
    ]
)

def get_cnn_model():
    base_model = keras.applications.efficientnet.EfficientNetB0(
        input_shape=(*IMAGE_SIZE, 3),
        include_top=False,
        weights="imagenet"
    )
    base_model.trainable = False
    base_model_out = base_model.output
    base_model_out = layers.Reshape((-1, base_model_out.shape[-1]))(base_model_out)
    cnn_model = keras.models.Model(base_model.input, base_model_out)
    return cnn_model

class TransformerEncoderBlock(layers.Layer):
    def __init__(self, embed_dim, dense_dim, num_heads, **kwargs):
        super().__init__(**kwargs)
        self.embed_dim = embed_dim
        self.dense_dim = dense_dim
        self.num_heads = num_heads
        self.attention_1 = layers.MultiHeadAttention(
            num_heads=num_heads, key_dim=embed_dim, dropout=0.0
        )
        self.layernorm_1 = layers.LayerNormalization()
        self.layernorm_2 = layers.LayerNormalization()
        self.dense_1 = layers.Dense(embed_dim, activation="relu")

    def call(self, inputs, training):
        inputs = self.layernorm_1(inputs)
        inputs = self.dense_1(inputs)

        attention_output_1 = self.attention_1(
            query=inputs,
            value=inputs,
            key=inputs,
            training=training,
        )
        out_1 = self.layernorm_2(inputs + attention_output_1)
        return out_1

class PositionalEmbedding(layers.Layer):
    def __init__(self, sequence_length, vocab_size, embed_dim, **kwargs):
        super().__init__(**kwargs)
        self.token_embeddings = layers.Embedding(
            input_dim=vocab_size, output_dim=embed_dim, mask_zero=True
        )
        self.position_embeddings = layers.Embedding(
            input_dim=sequence_length, output_dim=embed_dim
        )
        self.sequence_length = sequence_length
        self.vocab_size = vocab_size
        self.embed_dim = embed_dim

        self.add = layers.Add()


    def call(self, seq):
      seq = self.token_embeddings(seq)

      x = tf.range(tf.shape(seq)[1])
      x = x[tf.newaxis, :]
      x = self.position_embeddings(x)

      return self.add([seq,x])

class TransformerDecoderBlock(layers.Layer):
    def __init__(self, embed_dim, ff_dim, num_heads, **kwargs):
        super().__init__(**kwargs)
        self.embed_dim = embed_dim
        self.ff_dim = ff_dim
        self.num_heads = num_heads
        self.attention_1 = layers.MultiHeadAttention(
            num_heads=num_heads, key_dim=embed_dim, dropout=0.1
        )
        self.attention_2 = layers.MultiHeadAttention(
            num_heads=num_heads, key_dim=embed_dim, dropout=0.1
        )
        self.ffn_layer_1 = layers.Dense(ff_dim, activation="relu")
        self.ffn_layer_2 = layers.Dense(embed_dim)

        self.layernorm_1 = layers.LayerNormalization()
        self.layernorm_2 = layers.LayerNormalization()
        self.layernorm_3 = layers.LayerNormalization()

        self.embedding = PositionalEmbedding(
            embed_dim=EMBED_DIM,
            sequence_length=SEQ_LENGTH,
            vocab_size=VOCAB_SIZE,
        )
        self.out = layers.Dense(VOCAB_SIZE, activation="softmax")

        self.dropout_1 = layers.Dropout(0.3)
        self.dropout_2 = layers.Dropout(0.5)
        self.supports_masking = True

    def call(self, inputs, encoder_outputs, training, mask=None):
        inputs = self.embedding(inputs)

        attention_output_1 = self.attention_1(
            query=inputs,
            value=inputs,
            key=inputs,
            training=training,
            use_causal_mask=True
        )
        out_1 = self.layernorm_1(inputs + attention_output_1)

        attention_output_2 = self.attention_2(
            query=out_1,
            value=encoder_outputs,
            key=encoder_outputs,
            training=training,
        )
        out_2 = self.layernorm_2(out_1 + attention_output_2)

        ffn_out = self.ffn_layer_1(out_2)
        ffn_out = self.dropout_1(ffn_out, training=training)
        ffn_out = self.ffn_layer_2(ffn_out)

        ffn_out = self.layernorm_3(ffn_out + out_2, training=training)
        ffn_out = self.dropout_2(ffn_out, training=training)
        preds = self.out(ffn_out)
        return preds

class ImageCaptioningModel(keras.Model):
    def __init__(
        self,
        cnn_model,
        encoder,
        decoder,
        image_aug=None,
        **kwargs):
        super().__init__(**kwargs)
        self.cnn_model = cnn_model
        self.encoder = encoder
        self.decoder = decoder
        self.image_aug = image_aug

    def call(self, inputs, training):
        img, caption = inputs
        if self.image_aug:
            img = self.image_aug(img)
        img_embed = self.cnn_model(img)
        encoder_out = self.encoder(img_embed, training=training)
        pred = self.decoder(caption, encoder_out, training=training)
        return pred
    
    
    
cnn_model = get_cnn_model()
encoder = TransformerEncoderBlock(embed_dim=EMBED_DIM, 
                                  dense_dim=FF_DIM, 
                                  num_heads=1)

decoder = TransformerDecoderBlock(embed_dim=EMBED_DIM, 
                                  ff_dim=FF_DIM, 
                                  num_heads=2)

loaded_model = ImageCaptioningModel(
    cnn_model=cnn_model,
    encoder=encoder,
    decoder=decoder,
    image_aug=image_augmentation)

loaded_model.compile(optimizer=keras.optimizers.Adam(learning_rate = 3e-4), loss='sparse_categorical_crossentropy',
                      metrics=['accuracy'])

loaded_model.load_weights("Checkpoint")

vocab = np.load("vocabulary.npy")
index_lookup = dict(zip(range(len(vocab)), vocab))
data_txt = np.load("text_data.npy").tolist()

max_decoded_sentence_length = SEQ_LENGTH - 1
strip_chars = "!\"#$%&'()*+,-./:;=?@[\]^_`{|}~"


def custom_standardization(input_string):
    lowercase = tf.strings.lower(input_string)
    return tf.strings.regex_replace(lowercase, f'{re.escape(strip_chars)}', '')


vectorization = keras.layers.TextVectorization(
    max_tokens=VOCAB_SIZE,
    output_mode="int",
    output_sequence_length=SEQ_LENGTH,
    standardize=custom_standardization,
)

vectorization.adapt(data_txt)

def generate_caption(image):
    

    img = tf.constant(image)
    img = tf.image.resize(img, IMAGE_SIZE)
    img = tf.image.convert_image_dtype(img, tf.float32)
    img = tf.expand_dims(img, 0)
    img = loaded_model.cnn_model(img)
    encoded_img = loaded_model.encoder(img, training=False)

    decoded_caption = "startseq "
    for i in range(SEQ_LENGTH - 1):
        tokenized_caption = vectorization([decoded_caption])
        mask = tf.math.not_equal(tokenized_caption, 0)
        predictions = loaded_model.decoder(
            tokenized_caption, encoded_img, training=False, mask=mask
        )
        sampled_token_index = np.argmax(predictions[0, i, :])
        sampled_token = index_lookup[sampled_token_index]
        if sampled_token == "endseq":
            break
        decoded_caption += " " + sampled_token

    decoded_caption = decoded_caption.replace("startseq ", "")
    decoded_caption = decoded_caption.replace(" endseq", "").strip()
    return decoded_caption

demo = gr.Interface(fn=generate_caption,
             inputs=gr.components.Image(),
             outputs=[gr.components.Textbox(label="Generated Caption", lines=3)],
             )

demo.launch(share = True, debug = True)