import gradio as gr from transformers import AutoModelForSequenceClassification, AutoTokenizer import torch # Load model and tokenizer model_name = "cross-encoder/ms-marco-MiniLM-L-12-v2" tokenizer = AutoTokenizer.from_pretrained(model_name) model = AutoModelForSequenceClassification.from_pretrained(model_name) model.eval() # Function to compute relevance scores (in logits) and dynamically adjust threshold def get_relevance_score_and_excerpt(query, paragraph1, paragraph2, paragraph3, threshold_weight): # Handle empty input for paragraphs paragraphs = [p for p in [paragraph1, paragraph2, paragraph3] if p.strip()] if not query.strip() or not paragraphs: return "Please provide both a query and at least one document paragraph.", "" ranked_paragraphs = [] # Process each paragraph and calculate its logits and highlighted text for paragraph in paragraphs: # Tokenize the input inputs = tokenizer(query, paragraph, return_tensors="pt", truncation=True, padding=True) with torch.no_grad(): output = model(**inputs, output_attentions=True) # Extract logits (no sigmoid applied) logit = output.logits.squeeze().item() base_relevance_score = logit # Relevance score in logits # Dynamically adjust the attention threshold based on user weight dynamic_threshold = max(0.02, threshold_weight) # Extract attention scores (last layer) attention = output.attentions[-1] attention_scores = attention.mean(dim=1).mean(dim=0) query_tokens = tokenizer.tokenize(query) paragraph_tokens = tokenizer.tokenize(paragraph) query_len = len(query_tokens) + 2 # +2 for special tokens [CLS] and first [SEP] para_start_idx = query_len para_end_idx = len(inputs["input_ids"][0]) - 1 if para_end_idx <= para_start_idx: continue para_attention_scores = attention_scores[para_start_idx:para_end_idx, para_start_idx:para_end_idx].mean(dim=0) if para_attention_scores.numel() == 0: continue # Get indices of relevant tokens above dynamic threshold relevant_indices = (para_attention_scores > dynamic_threshold).nonzero(as_tuple=True)[0].tolist() # Reconstruct paragraph with bolded relevant tokens using HTML tags highlighted_text = "" for idx, token in enumerate(paragraph_tokens): if idx in relevant_indices: highlighted_text += f"{token} " else: highlighted_text += f"{token} " highlighted_text = tokenizer.convert_tokens_to_string(highlighted_text.split()) ranked_paragraphs.append({ "logit": logit, "highlighted_text": highlighted_text }) # Sort paragraphs by logit (descending) ranked_paragraphs.sort(key=lambda x: x["logit"], reverse=True) # Prepare output: Combine scores and highlighted text in a readable format output_html = "
Relevance Score (Logits) | Highlighted Paragraph |
---|---|
{round(item['logit'], 4)} | " output_html += f"{item['highlighted_text']} |