Spaces:
Runtime error
Runtime error
weiliming
commited on
Commit
·
b230689
1
Parent(s):
b99241b
support franch
Browse files- app.py +50 -12
- requirements.txt +2 -1
app.py
CHANGED
@@ -3,32 +3,70 @@ import numpy as np
|
|
3 |
import torch
|
4 |
from datasets import load_dataset
|
5 |
|
6 |
-
from transformers import
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
7 |
|
8 |
|
9 |
device = "cuda:0" if torch.cuda.is_available() else "cpu"
|
10 |
|
11 |
# load speech translation checkpoint
|
12 |
-
asr_pipe = pipeline(
|
|
|
|
|
13 |
|
|
|
|
|
14 |
# load text-to-speech checkpoint and speaker embeddings
|
15 |
-
processor = SpeechT5Processor.from_pretrained("microsoft/speecht5_tts")
|
|
|
|
|
16 |
|
17 |
-
|
18 |
-
|
19 |
|
20 |
-
|
21 |
-
|
|
|
22 |
|
23 |
|
|
|
|
|
24 |
def translate(audio):
|
25 |
-
outputs = asr_pipe(audio, max_new_tokens=256, generate_kwargs={"task": "translate"})
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
26 |
return outputs["text"]
|
27 |
|
28 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
29 |
def synthesise(text):
|
30 |
-
inputs =
|
31 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
32 |
return speech.cpu()
|
33 |
|
34 |
|
@@ -41,7 +79,7 @@ def speech_to_speech_translation(audio):
|
|
41 |
|
42 |
title = "Cascaded STST"
|
43 |
description = """
|
44 |
-
Demo for cascaded speech-to-speech translation (STST), mapping from source speech in any language to target speech in
|
45 |
[SpeechT5 TTS](https://huggingface.co/microsoft/speecht5_tts) model for text-to-speech:
|
46 |
|
47 |

|
@@ -69,4 +107,4 @@ file_translate = gr.Interface(
|
|
69 |
with demo:
|
70 |
gr.TabbedInterface([mic_translate, file_translate], ["Microphone", "Audio File"])
|
71 |
|
72 |
-
demo.launch()
|
|
|
3 |
import torch
|
4 |
from datasets import load_dataset
|
5 |
|
6 |
+
from transformers import (
|
7 |
+
SpeechT5ForTextToSpeech,
|
8 |
+
SpeechT5HifiGan,
|
9 |
+
SpeechT5Processor,
|
10 |
+
pipeline,
|
11 |
+
VitsModel,
|
12 |
+
VitsTokenizer,
|
13 |
+
)
|
14 |
|
15 |
|
16 |
device = "cuda:0" if torch.cuda.is_available() else "cpu"
|
17 |
|
18 |
# load speech translation checkpoint
|
19 |
+
asr_pipe = pipeline(
|
20 |
+
"automatic-speech-recognition", model="openai/whisper-base", device=device
|
21 |
+
)
|
22 |
|
23 |
+
|
24 |
+
# speecht5
|
25 |
# load text-to-speech checkpoint and speaker embeddings
|
26 |
+
# processor = SpeechT5Processor.from_pretrained("microsoft/speecht5_tts")
|
27 |
+
# model = SpeechT5ForTextToSpeech.from_pretrained("microsoft/speecht5_tts").to(device)
|
28 |
+
# vocoder = SpeechT5HifiGan.from_pretrained("microsoft/speecht5_hifigan").to(device)
|
29 |
|
30 |
+
# embeddings_dataset = load_dataset("Matthijs/cmu-arctic-xvectors", split="validation")
|
31 |
+
# speaker_embeddings = torch.tensor(embeddings_dataset[7306]["xvector"]).unsqueeze(0)
|
32 |
|
33 |
+
# mms
|
34 |
+
model = VitsModel.from_pretrained("Matthijs/mms-tts-fra")
|
35 |
+
tokenizer = VitsTokenizer.from_pretrained("Matthijs/mms-tts-fra")
|
36 |
|
37 |
|
38 |
+
# 保持 main 函数 speech_to_speech_translation 不变
|
39 |
+
# 并根据需要仅更新 translate 和 synthesise 函数
|
40 |
def translate(audio):
|
41 |
+
# outputs = asr_pipe(audio, max_new_tokens=256, generate_kwargs={"task": "translate"})
|
42 |
+
outputs = asr_pipe(
|
43 |
+
audio,
|
44 |
+
max_new_tokens=256,
|
45 |
+
generate_kwargs={"task": "transcribe", "language": "fr"},
|
46 |
+
# generate_kwargs={"task": "transcribe"},
|
47 |
+
)
|
48 |
+
print(outputs)
|
49 |
return outputs["text"]
|
50 |
|
51 |
|
52 |
+
# speecht5
|
53 |
+
# def synthesise(text):
|
54 |
+
# inputs = processor(text=text, return_tensors="pt")
|
55 |
+
# speech = model.generate_speech(
|
56 |
+
# inputs["input_ids"].to(device), speaker_embeddings.to(device), vocoder=vocoder
|
57 |
+
# )
|
58 |
+
# return speech.cpu()
|
59 |
+
|
60 |
+
|
61 |
def synthesise(text):
|
62 |
+
inputs = tokenizer(text, return_tensors="pt")
|
63 |
+
input_ids = inputs["input_ids"]
|
64 |
+
|
65 |
+
with torch.no_grad():
|
66 |
+
outputs = model(input_ids)
|
67 |
+
|
68 |
+
speech = outputs.audio[0]
|
69 |
+
|
70 |
return speech.cpu()
|
71 |
|
72 |
|
|
|
79 |
|
80 |
title = "Cascaded STST"
|
81 |
description = """
|
82 |
+
Demo for cascaded speech-to-speech translation (STST), mapping from source speech in any language to target speech in Chinese. Demo uses OpenAI's [Whisper Base](https://huggingface.co/openai/whisper-base) model for speech translation, and Microsoft's
|
83 |
[SpeechT5 TTS](https://huggingface.co/microsoft/speecht5_tts) model for text-to-speech:
|
84 |
|
85 |

|
|
|
107 |
with demo:
|
108 |
gr.TabbedInterface([mic_translate, file_translate], ["Microphone", "Audio File"])
|
109 |
|
110 |
+
demo.launch(share=True)
|
requirements.txt
CHANGED
@@ -1,4 +1,5 @@
|
|
1 |
torch
|
2 |
-
git+https://github.com/huggingface/transformers
|
|
|
3 |
datasets
|
4 |
sentencepiece
|
|
|
1 |
torch
|
2 |
+
# git+https://github.com/huggingface/transformers
|
3 |
+
git+https://github.com/hollance/transformers.git@6900e8ba6532162a8613d2270ec2286c3f58f57b
|
4 |
datasets
|
5 |
sentencepiece
|