willwade's picture
First push
e2c1e0f
#! /usr/bin/env python
# -*- coding: utf-8 -*-
# Copyright 2021 Imperial College London (Pingchuan Ma)
# Apache 2.0 (http://www.apache.org/licenses/LICENSE-2.0)
import torch
import torch.nn as nn
from espnet.nets.pytorch_backend.backbones.modules.resnet import ResNet, BasicBlock
from espnet.nets.pytorch_backend.transformer.convolution import Swish
def threeD_to_2D_tensor(x):
n_batch, n_channels, s_time, sx, sy = x.shape
x = x.transpose(1, 2)
return x.reshape(n_batch * s_time, n_channels, sx, sy)
class Conv3dResNet(torch.nn.Module):
"""Conv3dResNet module
"""
def __init__(self, backbone_type="resnet", relu_type="swish"):
"""__init__.
:param backbone_type: str, the type of a visual front-end.
:param relu_type: str, activation function used in an audio front-end.
"""
super(Conv3dResNet, self).__init__()
self.frontend_nout = 64
self.trunk = ResNet(BasicBlock, [2, 2, 2, 2], relu_type=relu_type)
self.frontend3D = nn.Sequential(
nn.Conv3d(1, self.frontend_nout, (5, 7, 7), (1, 2, 2), (2, 3, 3), bias=False),
nn.BatchNorm3d(self.frontend_nout),
Swish(),
nn.MaxPool3d((1, 3, 3), (1, 2, 2), (0, 1, 1))
)
def forward(self, xs_pad):
B, C, T, H, W = xs_pad.size()
xs_pad = self.frontend3D(xs_pad)
Tnew = xs_pad.shape[2]
xs_pad = threeD_to_2D_tensor(xs_pad)
xs_pad = self.trunk(xs_pad)
return xs_pad.view(B, Tnew, xs_pad.size(1))