File size: 10,812 Bytes
e2c1e0f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
# Copyright 2019 Shigeki Karita
#  Apache 2.0  (http://www.apache.org/licenses/LICENSE-2.0)

"""Transformer speech recognition model (pytorch)."""

from argparse import Namespace
from distutils.util import strtobool
import logging
import math

import numpy
import torch

from espnet.nets.ctc_prefix_score import CTCPrefixScore
from espnet.nets.e2e_asr_common import end_detect
from espnet.nets.e2e_asr_common import ErrorCalculator
from espnet.nets.pytorch_backend.ctc import CTC
from espnet.nets.pytorch_backend.nets_utils import get_subsample
from espnet.nets.pytorch_backend.nets_utils import make_non_pad_mask
from espnet.nets.pytorch_backend.nets_utils import th_accuracy
from espnet.nets.pytorch_backend.transformer.add_sos_eos import add_sos_eos
from espnet.nets.pytorch_backend.transformer.attention import (
    MultiHeadedAttention,  # noqa: H301
    RelPositionMultiHeadedAttention,  # noqa: H301
)
from espnet.nets.pytorch_backend.transformer.decoder import Decoder
from espnet.nets.pytorch_backend.transformer.encoder import Encoder
from espnet.nets.pytorch_backend.transformer.label_smoothing_loss import (
    LabelSmoothingLoss,  # noqa: H301
)
from espnet.nets.pytorch_backend.transformer.mask import subsequent_mask
from espnet.nets.pytorch_backend.transformer.mask import target_mask
from espnet.nets.scorers.ctc import CTCPrefixScorer


class E2E(torch.nn.Module):
    """E2E module.

    :param int idim: dimension of inputs
    :param int odim: dimension of outputs
    :param Namespace args: argument Namespace containing options

    """

    @staticmethod
    def add_arguments(parser):
        """Add arguments."""
        group = parser.add_argument_group("transformer model setting")

        group.add_argument(
            "--transformer-init",
            type=str,
            default="pytorch",
            choices=[
                "pytorch",
                "xavier_uniform",
                "xavier_normal",
                "kaiming_uniform",
                "kaiming_normal",
            ],
            help="how to initialize transformer parameters",
        )
        group.add_argument(
            "--transformer-input-layer",
            type=str,
            default="conv2d",
            choices=["conv3d", "conv2d", "conv1d", "linear", "embed"],
            help="transformer input layer type",
        )
        group.add_argument(
            "--transformer-encoder-attn-layer-type",
            type=str,
            default="mha",
            choices=["mha", "rel_mha", "legacy_rel_mha"],
            help="transformer encoder attention layer type",
        )
        group.add_argument(
            "--transformer-attn-dropout-rate",
            default=None,
            type=float,
            help="dropout in transformer attention. use --dropout-rate if None is set",
        )
        group.add_argument(
            "--transformer-lr",
            default=10.0,
            type=float,
            help="Initial value of learning rate",
        )
        group.add_argument(
            "--transformer-warmup-steps",
            default=25000,
            type=int,
            help="optimizer warmup steps",
        )
        group.add_argument(
            "--transformer-length-normalized-loss",
            default=True,
            type=strtobool,
            help="normalize loss by length",
        )
        group.add_argument(
            "--dropout-rate",
            default=0.0,
            type=float,
            help="Dropout rate for the encoder",
        )
        group.add_argument(
            "--macaron-style",
            default=False,
            type=strtobool,
            help="Whether to use macaron style for positionwise layer",
        )
        # -- input
        group.add_argument(
            "--a-upsample-ratio",
            default=1,
            type=int,
            help="Upsample rate for audio",
        )
        group.add_argument(
            "--relu-type",
            default="swish",
            type=str,
            help="the type of activation layer",
        )
        # Encoder
        group.add_argument(
            "--elayers",
            default=4,
            type=int,
            help="Number of encoder layers (for shared recognition part "
            "in multi-speaker asr mode)",
        )
        group.add_argument(
            "--eunits",
            "-u",
            default=300,
            type=int,
            help="Number of encoder hidden units",
        )
        group.add_argument(
            "--use-cnn-module",
            default=False,
            type=strtobool,
            help="Use convolution module or not",
        )
        group.add_argument(
            "--cnn-module-kernel",
            default=31,
            type=int,
            help="Kernel size of convolution module.",
        )
        # Attention
        group.add_argument(
            "--adim",
            default=320,
            type=int,
            help="Number of attention transformation dimensions",
        )
        group.add_argument(
            "--aheads",
            default=4,
            type=int,
            help="Number of heads for multi head attention",
        )
        group.add_argument(
            "--zero-triu",
            default=False,
            type=strtobool,
            help="If true, zero the uppper triangular part of attention matrix.",
        )
        # Relative positional encoding
        group.add_argument(
            "--rel-pos-type",
            type=str,
            default="legacy",
            choices=["legacy", "latest"],
            help="Whether to use the latest relative positional encoding or the legacy one."
            "The legacy relative positional encoding will be deprecated in the future."
            "More Details can be found in https://github.com/espnet/espnet/pull/2816.",
        )
        # Decoder
        group.add_argument(
            "--dlayers", default=1, type=int, help="Number of decoder layers"
        )
        group.add_argument(
            "--dunits", default=320, type=int, help="Number of decoder hidden units"
        )
        # -- pretrain
        group.add_argument("--pretrain-dataset",
            default="",
            type=str,
            help='pre-trained dataset for encoder'
        )
        # -- custom name
        group.add_argument("--custom-pretrain-name",
            default="",
            type=str,
            help='pre-trained model for encoder'
        )
        return parser

    @property
    def attention_plot_class(self):
        """Return PlotAttentionReport."""
        return PlotAttentionReport

    def __init__(self, odim, args, ignore_id=-1):
        """Construct an E2E object.
        :param int odim: dimension of outputs
        :param Namespace args: argument Namespace containing options
        """
        torch.nn.Module.__init__(self)
        if args.transformer_attn_dropout_rate is None:
            args.transformer_attn_dropout_rate = args.dropout_rate
        # Check the relative positional encoding type
        self.rel_pos_type = getattr(args, "rel_pos_type", None)
        if self.rel_pos_type is None and args.transformer_encoder_attn_layer_type == "rel_mha":
            args.transformer_encoder_attn_layer_type = "legacy_rel_mha"
            logging.warning(
                "Using legacy_rel_pos and it will be deprecated in the future."
            )

        idim = 80

        self.encoder = Encoder(
            idim=idim,
            attention_dim=args.adim,
            attention_heads=args.aheads,
            linear_units=args.eunits,
            num_blocks=args.elayers,
            input_layer=args.transformer_input_layer,
            dropout_rate=args.dropout_rate,
            positional_dropout_rate=args.dropout_rate,
            attention_dropout_rate=args.transformer_attn_dropout_rate,
            encoder_attn_layer_type=args.transformer_encoder_attn_layer_type,
            macaron_style=args.macaron_style,
            use_cnn_module=args.use_cnn_module,
            cnn_module_kernel=args.cnn_module_kernel,
            zero_triu=getattr(args, "zero_triu", False),
            a_upsample_ratio=args.a_upsample_ratio,
            relu_type=getattr(args, "relu_type", "swish"),
        )

        self.transformer_input_layer = args.transformer_input_layer
        self.a_upsample_ratio = args.a_upsample_ratio

        if args.mtlalpha < 1:
            self.decoder = Decoder(
                odim=odim,
                attention_dim=args.adim,
                attention_heads=args.aheads,
                linear_units=args.dunits,
                num_blocks=args.dlayers,
                dropout_rate=args.dropout_rate,
                positional_dropout_rate=args.dropout_rate,
                self_attention_dropout_rate=args.transformer_attn_dropout_rate,
                src_attention_dropout_rate=args.transformer_attn_dropout_rate,
            )
        else:
            self.decoder = None
        self.blank = 0
        self.sos = odim - 1
        self.eos = odim - 1
        self.odim = odim
        self.ignore_id = ignore_id
        self.subsample = get_subsample(args, mode="asr", arch="transformer")

        # self.lsm_weight = a
        self.criterion = LabelSmoothingLoss(
            self.odim,
            self.ignore_id,
            args.lsm_weight,
            args.transformer_length_normalized_loss,
        )

        self.adim = args.adim
        self.mtlalpha = args.mtlalpha
        if args.mtlalpha > 0.0:
            self.ctc = CTC(
                odim, args.adim, args.dropout_rate, ctc_type=args.ctc_type, reduce=True
            )
        else:
            self.ctc = None

        if args.report_cer or args.report_wer:
            self.error_calculator = ErrorCalculator(
                args.char_list,
                args.sym_space,
                args.sym_blank,
                args.report_cer,
                args.report_wer,
            )
        else:
            self.error_calculator = None
        self.rnnlm = None

    def scorers(self):
        """Scorers."""
        return dict(decoder=self.decoder, ctc=CTCPrefixScorer(self.ctc, self.eos))

    def encode(self, x, extract_resnet_feats=False):
        """Encode acoustic features.

        :param ndarray x: source acoustic feature (T, D)
        :return: encoder outputs
        :rtype: torch.Tensor
        """
        self.eval()
        x = torch.as_tensor(x).unsqueeze(0)
        if extract_resnet_feats:
            resnet_feats = self.encoder(
                x,
                None,
                extract_resnet_feats=extract_resnet_feats,
            )
            return resnet_feats.squeeze(0)
        else:
            enc_output, _ = self.encoder(x, None)
            return enc_output.squeeze(0)